Методика проверки блока питания

Методика проверки блока питания

Каждая статья будет состоять из трех основных частей: общее описание, тестирование блока питания и подведение итогов, а также, в случае необходимости, в статью будет добавляться вводная часть.

1. Общее описание блока питания включает в себя:

  • описание упаковки, в случае, если она есть
  • описание комплекта поставки БП, если он предусмотрен производителем
  • описание внешнего вида, непосредственно, блока
  • описание комплектных проводов и разъемов на них
  • описание используемого вентилятора
  • описание других элементов, в том числе, внутри блока питания

2. Тестирование блока питания, включает в себя:

  • проверка заявленных значений пульсаций напряжений при не максимальной статичной нагрузке
  • тестирование БП с различными вариантами нагрузки, составляющей до 100 процентов от указанной максимальной выходной мощности
  • тестирование блока питания в составе рабочей станции

Допустимые значения пульсаций и значений выходных напряжений, а также основные требования к блокам питания, приведены в Power Supply Design Gu >

По первому разделу, я думаю, вопросов не возникнет, а вот пункты второго раздела стоит немного прокомментировать и разъяснить.

Итак, проверка заявленных значений пульсаций напряжений будет производиться при мощности 75% от максимальной, указанной для данной модели блока питания, но с сохранением пропорций токов по каналам, заявленным производителем. Допустимые значения пульсаций и значений выходных напряжений, а также основные требования к блокам питания, приведены в Power Supply Design Guide, последняя версия которого — 2.2.

В основной части тестирования для каждого БП будет примерно рассчитан ряд токов в соответствии с максимальной мощностью, в связи с тем, что в современных системах на линию 12В приходится большая нагрузка, и со временем она имеет тенденцию только возрастать, а также учитывая тот факт, что максимальные токи, указанные производителем, не предназначены для одновременной нагрузки всех каналов.

Читайте также:  Нанесение номера на лодку пвх

Расчет максимальных значений токов для тестирования будет производиться по следующим принципам:

  • ток по линии 12В — максимальный
  • токи по линиям 3,3В и 5В в пропорции, примерно, 1:1
  • суммарная мощность линий 3,3В и 5В вычисляется вычитанием из максимальной мощности БП произведения максимального тока по линии 12В на, собственно, напряжение по данной линии. Проще говоря, из максимальной выходной мощности БП вычитается максимально допустимая мощность по каналу 12В, остаток делится на каналы 3,3В и 5В в указанной пропорции.

Тестирование будет заключаться в эксплуатации БП с переменной нагрузкой, составляющей 33, 67 и 100 процентов от заданных токов, рассчитанных в предыдущем пункте. Период смены значений токов будет составлять примерно две минуты. Обращаю внимание, что работа с максимальной (не путать с пиковой) выходной мощностью является штатным режимом работы блока питания.

По результатам тестирования будет составляться отчет, включающий в себя таблицу с цветовой маркировкой полученных значений выходных напряжений.

Тестирование блока питания в составе рабочей станции наиболее приближено к эксплуатации БП в реальных условиях.

В данный момент проводится выбор конфигурации компьютера-стенда, которая имела бы достаточную высокую мощность и хорошую масштабируемость для тестирования различных по своим энергетическим способностям блоков питания.

Временно тестирование будет проводиться на компьютере следующей конфигурации:

  • Процессор AMD Athlon 64 3000+
  • Матплата Кулер GlacialTech 7200
  • Матплата MSI K8N Neo Platinum
  • Оперативная память Patriot LL 512 Мб
  • Видеокарта Gigabyte GV-N66256DP
  • Жесткие диски: 2 HDD Samsung SP 0812C в RAID 0, HDD WD 1600JD
  • Корпус Antec SX630II

Тестирование будет заключаться в прогоне в течение часа демо-роликов из игры FarCry, также для тестов будет использоваться программный пакет CPU RightMark.

Оценка шумовых характеристик будет производиться субъективно.

Для измерения температуры будет использоваться бесконтактный термометр (пирометр) Thermopoint TPT 6 Pro Plus производства Flir Systems.

Измерение скорости вращения вентилятора также планируется, сейчас производится выбор оборудования для этой цели.

Измерение выходных напряжений будет производиться мультиметрами Fluke 111 класса True RMS.

Для измерения пульсаций выходных напряжений будет использоваться 2-х канальный цифровой осицилограф DS-1150 производства EZ Digital, имеющий полосу пропускания 150 МГц.

Для синтеризования нагрузки для блоков питания в ходе тестирования будут применяться три программируемых электронных нагрузочных блока SL-300 производства фирмы Unicorn.

В конце материала следует краткое подведение итогов и перечисление достоинств и недостатков, имеющихся у протестированного устройства, по личному мнению автора.

Для любого тестирования нужна методика, описывающая задачи, цели, средства и этапы измерения. Другой вопрос, что иногда методика не излагается напрямую, а подразумевается или, как вариант, находится исключительно в голове автора, и нигде в явном виде не изложена, такое тоже бывает. Мы же постараемся изложить нашу методику тестирования блоков питания достаточно популярно и в тоже время без излишних технологических подробностей.

Перед изложением непосредственно методики тестирования и оценки блоков питания хотелось бы привести основные теоретические сведения на основе которых мы, собственно, и основывались при ее создании. Начать стоит с основных определений и вводных данных.

Мощность — скорость поступления энергии от источника к потребителю.

Активная мощность (P) в цепи переменного тока характеризует необратимое преобразование электрической энергии в другой вид или род энергии, например, в тепловую, световую и механическую энергию. Единица измерения — ватт (Вт).

Реактивная мощность (Q) в цепи переменного тока является энергией, которой обменивается генератор и приемник и непосредственно в процессе преобразования она не участвует. Единица измерения — вольтампер реактивный (ВАР)

Коэффициент полезного действия (КПД) представляет собой отношение активной мощности Рвых, отбираемой от преобразователя (в данном случае блока питания), к активной мощности Рвх, подводимой к преобразователю.

Полная мощность (S) в сети переменного тока представляет собой произведение действующих значений напряжения и силы тока в цепи или находится как геометрическая сумма активной и реактивной мощности. Для источников электрической энергии переменного тока (генераторов, источников бесперебойного питания) указывается полная мощность, которая соответствует активной мощности (S=P, Q=0) в случае нагрузки, представляющей собой чисто активное сопротивление, при этом PF=1. Единица измерения — вольтампер (ВА)

Коэффициент мощности (КМ) (PF) представляет собой отношение активной мощности, потребленной преобразователем, к полной мощности подведенной к нему посредством электрической сети переменного тока и показывает эффективность использования энергоресурсов электрической сети (источника переменного тока) потребителем (преобразователем).

Корректор коэффициента мощности (ККМ) (PFC) — функциональный модуль блока питания, предназначенный для повышения коэффициента мощности с целью снижения паразитной нагрузки на источник переменного тока (электрическую сеть общего пользования) за счет уменьшения реактивной мощности путем повышения линейности формы потребляемого тока.

В компьютерных блоках питания встречаются две разновидности ККМ. Пассивный корректор коэффициента мощности (PPFC) представляет собой дроссель (трансформатор), при этом является чисто пассивным, но зато очень увесистым, элементом. Эффективность применения подобного корректора невысокая, хотя некоторый эффект он и дает.

Активный корректор коэффициента мощности (APFC) имеет в своем составе накопительный дроссель, ключевые транзисторы и управляющую микросхему. АККМ по сути является импульсным преобразователем, имеющем на выходе напряжение около 400 В. При этом за счет высокой частоты работы преобразователя, составляющей от десятков до сотен килогерц (в схеме без APFC частота 50 Гц) на входе блока питания форма тока представляет собой практически правильную синусоиду, то есть для электросети общего пользования блок питания, оснащенный модулем APFC представляется в виде обычного активного сопротивления. При использовании APFC коэффициент мощности блоков питания находится, как правило, в диапазоне 0,95—0,99 (95—99%).

Дополнительным преимуществом применения APFC в блоке питания является возможность использования более энергоемких конденсаторов во входном выпрямителе. Дело в том, что энергоемкость конденсатора пропорциональна квадрату напряжения, поэтому энергоемкость конденсаторов на 400 В и 160 В отличаются примерно в шесть раз при прочих равных условиях. Данный факт позволяет использовать меньшее количество конденсаторов во входном выпрямителе (один вместо двух), а также снижать их емкость без ущерба для энергетических возможностей блока питания.

Основные сведения по компьютерным блокам питания содержатся в документе Power Supply Design Guide for Desktop Platform Form Factor, последняя ревизия 1,1 датирована мартом 2007 года. Данный документ включает в себя спецификации ATX 12V текущей версии 2,3, которые раньше содержались в отдельном документе PSDG ATX12V, имеющем последнюю версию 2,2.

В спецификациях рекомендуемая мощность блоков питания представлена в двух видах: как таблица с максимальными и пиковыми токами по соответствующим линиям, так и в графическом виде с указанием мощности по шинам в ваттах.

Что касается табличного представления, то в данном случае приводятся максимальные токи, которые достигаются по каждой линии отдельно, но при этом нагрузка по остальным линиям подразумевается немаксимальной. Также нельзя просто просуммировать полученные произведения максимальных токов и номинальных напряжений, точнее просуммировать конечно можно, но при этом получаем число никакого отношения к реальной выходной мощности блока питания не имеющее. Разница между максимальным и пиковым током заключается в том, что первый — блок питания обязан обеспечивать продолжительное время в течение, как минимум часа, а второй — кратковременно в течение 17 секунд. В своих измерениях мы используем только значения максимальных токов, то есть блоки питания тестируются в номинальном режиме работы.

Отличие шины питания от линии питания достаточно условное, схематично шину можно представить себе, как участок цепи от вторичной обмотки основного трансформатора до выходных разъемов на проводах со стороны комплектующих, линия же представляет собой участок шины либо от диодной сборки выходного каскада, либо от точки разделения шины на несколько линий. В блоке питания, как правило, всегда присутствуют две основные шины — это 12V и 3,3&5V. При это линий может быть достаточно большое количество.

В характеристиках блока питания, помимо общей выходной мощности, как правило, указывается мощность по отдельным шинам, хотя, в существующих условиях, мощность по шине 3,3&5V абсолютно не критична, так потребление системного блока по данной шине крайне редко превышает 50 Вт, а все современные блоки питания способны отдать в нагрузку по ней минимум 100 Вт, а чаще всего 140-200 Вт. Поэтому основное внимание нужно уделять прежде всего шине 12V, так как основное энергопотребление в современном системном блоке производится именно по данной шине. Для получения максимального значения допустимого тока нагрузки по шине 12V необходимо поделить указанную на БП максимальную мощность 12V на значение номинального напряжения, то есть на 12 В, полученное значение и будет являть силой тока в амперах, характеризующее реальную выходную мощность данной шины БП, реальную — с точки зрения заявленных характеристик конечно.

Как было сказано ранее, графическое представление характеристик оперирует уже мощностью по каналам, что, собственно говоря, нам только на руку. С помощью вышеупомянутых диаграм была составлена более развернутая таблица характеристик.

Недавно понадобилось произвести диагностику питания, для того чтобы понять по какой причине не запускается машина. К сожалению, в интернете оказалось мало годных статей на эту тему, поэтому пришлось самому лезть в даташиты.
Эта статья является выжимкой из моих изысканий и надеюсь поможет кому-нибудь, когда им придется заниматься тем же самым.

Дисклеймер номер раз: Данная статья относится только к обычным блокам питания стандарта ATX, она не относится к проприетарным стандартам блоков (например как у старыx рабочиx станциях DELL или SUN), использующим другую распиновку ATX-коннектора. Внимательно сверьтесь со схемой и убедитесь в том, что ваш блок питания является стандартным прежде чем проводить диагностику, во избежании причинения вреда вашему компьютеру.

Дисклеймер номер два: Вы должны понимать что вы делаете и соблюдать технику безопасности, в том числе электростатической (в т.ч. работать в антистатическом браслете). Автор не несет ответственности за порчу оборудования или вред здоровью вследствие несоблюдения или незнания техники безопасности и принципов работы устройства.

Перейдем к теории:

Стандарт ATX имеет 2 версии — 1.X и 2.X, имеющие 20 и 24-пиновые коннекторы соответственною, вторая версия имеет 24-x 4 дополнительных пина, удлиняя тем самым стандартный коннектор на 2 секции таким образом:

Прежде чем мы начнем, расскажу про “правила большого пальца” по отношению к неисправностям:
1) Проблемную материнскую плату легче заменить чем починить, это крайне сложная и многослойная схема, в которой разве что можно заменить пару конденсаторов, а обычно это проблемы не решает.
2) Если вы не уверены в том что вы делаете, то не делайте этого.

Перейдем к диагностике:

Вам понадобится обычный мультиметр. Необходимы достаточно тонкие щупы, для того чтобы мы могли тыкнуть в провод с задней части коннектора.
Ничего из корпуса не вынимаем. Диагностику проводим с коннектором питания в материнской плате, и включенным блоком питания, подключенным к сети.

Если ваш мультиметр не имеет функции автоматической подстройки диапазона, то выставьте его на измерение десяток вольт постоянного напряжения. (Обычно обозначается 20 Vdc)
Поставим черный щуп на землю (GND-pin, COM, см. схему выше) — черный провод, к примеру контакты 15, 16, 17.

Концом красного щупа тыкаем в:
1) Пин 9 (Пурпурный, VSB) — должен иметь напряжение 5 вольт ± 5%. Это резервный интерфейс питания и он работает всегда, когда блок питания подключен к сети. Он используется для питания компонентов, которые должны работать, пока 5 основных каналов питания недоступны. К примеру — контроль питания, Wake on LAN, USB-устройства, контроль вскрытия и т.д.
Если напряжения нет или он меньше/больше, то это означает серьезные проблемы со схемой самого блока питания.

2) Пин 14 (Зеленый, PS_On) должен иметь напряжение в районе 3-5 вольт. Если напряжения нет, то отключите кнопку питания от материнской платы. Если напряжение поднимется, то виновата кнопка.

Все еще держим красный щуп на 14ом контакте…
3) Смотрим на мультиметр и нажимаем кнопку питания, напряжение должно упасть до 0, сигнализируя блоку питания о том, что надо врубать основные рельсы питания постоянного тока: +12VDC, +5VDC, +3.3VDC, -5VDC и -12 VDC. Если изменений нет, то проблема либо в процессоре/материнской плате, либо в кнопке питания. Для того чтобы проверить кнопку питания вытаскиваем ее коннектор из разъема на материнской плате и легонько закорачиваем пины легким прикосновением отвертки или джампером. Также можно попробовать аккуратно проводом закоротить PS_On на землю сзади. Eсли изменений нет, то скорее всего что-то случилось с метринской платой, процессором или его сокетом.
Если подозрения все-таки падают именно на процессор, то можно попытаться заменить процессор на известный исправный, но делать это на свой страх и риск, поскольку если убила его неисправная мать, то тоже самое может случиться и с этим.

0 В на PS_On… (Т.e. после нажатия на кнопку)
4) Проверяем Pin 8 (Серый, Power_OK) он должен иметь напряжение

3-5V, что будет означать что выходы +12V +5V и +3.3V находятся на примемлемом уровне и держат его достаточное время, что дает процессору сигнал стартовать. Если напряжение ниже 2.5V то ЦП не получает сигнала к старту.
В таком случае виноват блок питания.

5) Нажатие на Restart должно заставить напряжение на PWR_OK упасть до 0 и быстро подняться обратно.
На некоторых материнских платах этого происходить не будет, в случае если производитель использует “мягкий” триггер перезагрузки.

5V на PWR_OK
6) Смотрим на таблицу и сверяем основные параметры напряжения на коннекторе и всех коннекторах периферии:

Тестируем на пробои:

ОТКЛЮЧАЕМ КОМПЬЮТЕР ОТ СЕТИ и ждем 1 минуту пока уйдет остаточный ток.

Ставим мультиметр на измерение сопротивления. Если ваш мультиметр не имеет автоматической подстройки диапазона, то ставим его на самый нижний порог измерений (Обычно это значок 200 Ω). Из-за погрешностей, замкнутая цепь не всегда соответствует 0 Ом. Сомкните щупы мультиметра и посмотрите какую цифру он показывает, это и будет нулевым значением для замкнутой цепи.

Проверим цепи блока питания:
Вынимаем коннектор из материнской платы…
И держа один из концов мультиметра на металлической части корпуса компьютера…
1) Дотрагиваемся щупом мультиметра до одного из черных проводов в коннекторе, а потом до среднего штырька (земли) сетевой вилки. Сопротивление должно быть нулевым, если это не так, то блок питания плохо заземлен и его следует заменить.
2) Дотрагиваемся щупом до всех цветных проводов в коннекторе по очереди. Значения должны быть больше нуля. Значение, равное 0 или меньше 50 Ом означает проблему в цепях питания.

Тестируем материнскую плату на пробои:
Вынимаем процессор из сокета…
Внимательно рассматриваем схему выше и, используя коннектор питания как пример, изучаем какие порты разъема чему соответствуют. Это очень важно, поскольку тестировать можно только землю (GND, Черные провода) иначе ток мультиметра может повредить цепи материнской платы.
3) Дотрагиваемся одним щупом мультиметра до шасси, а другим тыкаем во все разъемы земли (GND, пины 3, 5, 7, 13, 15, 16, 17) и смотрим на мультиметр. Сопротивление должно быть нулевым. Если оно не нулевое вытаскиваем материнскую плату из корпуса и тестируем опять, только в этот раз один из щупов должен касаться металлизированного колечка у отверстия для шурупов на которых плата фиксируется к задней стенке корпуса. Если значение сопротивления все еще ненулевое, то с цепями материнской платы что-то глубоко не так и скорее всего ее придется менять.

Для интересующихся и желающих залезть глубже советую почитать данный документ:
ATX12V Power Supply Design Guide Version 2.2

Оценить статью
Добавить комментарий