Контроль температуры на ардуино

Контроль температуры на ардуино

Содержание

Простая система поддержания комфорта за рабочим столом. Если становится жарко, система включает вентилятор. Если воздух становится слишком сухим, начинает работать настольный фонтанчик.

Контроллер получает данные с цифрового датчика температуры и влажности DHT-11 и показывает их на четырёхсегментном дисплее. Для управления электроприборами используются мини-реле.

Что потребуется

Полный сет компонентов проекта. В сет входят:

Видеоинструкция

Внимание!

Работа с высоким напряжением опасна для вашего здоровья и жизни. На плате существуют области, прикосновение к которым приведёт к поражению электрическим током. Это винты контактных колодок и места пайки выводов контактных колодок и реле. Не работайте с платой, если она подключена к бытовой сети. Для готового устройства используйте изолированный корпус.

Если вы сомневаетесь как подключить к реле электроприбор, работающий от общей сети 220 В и у вас есть сомнения, вопросы на тему того как это делается, остановитесь: вы можете устроить пожар или убить себя. Убедитесь, что у вас в голове — кристальное понимание принципа работы устройства и опасностей, которые связаны с высоким напряжением.

Как собрать

Установите Troyka Slot Shield на Iskra Neo

Возьмите датчик температуры DHT-11 и вставьте в правый верхний слот.

Поверните два мини-реле на 90 градусов против часовой стрелки и вставьте их в свободные слоты верхнего ряда.

Переверните Quad Display на 180 градусов и вставьте в левый и центральный слоты нижнего ряда.

Если у вас старый модуль семисегментного индикатора (у него всего три ноги и расположены они слева), схема сборки устройства, скетч и библиотеки будут отличаться. Мы выложили их ниже, в ответах на часто задаваемые вопросы .

Скетч

Прошейте контроллер скетчем через Arduino IDE.

Хотите собрать другой девайс? Выберите своё будущее устройство из списка проектов на Slot Shield.

Да, модуль можно использовать, но скетч, библиотеки и схема сборки отличаются.

Вставьте QuadDisplay в левый нижний слот

Прошейте контроллер скетчем через Arduino IDE.

Датчик температуры в Arduino – один из самых распространенных видов сенсоров. Разработчику проектов с термометрами на Arduino доступно множество разных вариантов, отличающихся по принципу действия, точности, конструктивному исполнению. Цифровой датчик DS18B20 является одним из наиболее популярных температурных датчиков, часто он используется в водонепроницаемом корпусе для измерения температуры воды или других жидкостей. В этой статье вы найдете описание датчика ds18b20 на русском, мы вместе рассмотрим особенности подключения к ардуино, принцип работы датчика, описание библиотек и скетчей.

Описание датчика DS18B20 для Arduino

DS18B20 – это цифровой температурный датчик, обладающий множеством полезных функций. По сути, DS18B20 – это целый микроконтроллер, который может хранить значение измерений, сигнализировать о выходе температуры за установленные границы (сами границы мы можем устанавливать и менять), менять точность измерений, способ взаимодействия с контроллером и многое другое. Все это в очень небольшом корпусе, который, к тому же, доступен в водонепроницаемом исполнении.

Микросхема имеет три выхода, из которых для данных используется только один, два остальных – это земля и питание. Число проводов можно сократить до двух, если использовать схему с паразитным питанием и соединить Vdd с землей. К одному проводу с данными можно подключить сразу несколько датчиков DS18B20 и в плате Ардуино будет задействован всего один пин.

Виды корпусов DS18B20

Температурный датчик DS18B20 имеет разнообразные виды корпуса. Можно выбрать один из трех – 8-Pin SO (150 mils), 8-Pin µSOP, и 3-Pin TO-92. Последний является наиболее распространенным и изготавливается в специальном влагозащитном корпусе, так что его смело можно использовать под водой. У каждого датчика есть 3 контакта. Для корпуса TO-92 нужно смотреть на цвет проводов: черный – земля, красный – питание и белый/желтый/синий – сигнал. В интернет-магазинах можно купить готовый модуль DS18B20.

Где купить датчик

Естественно, что DS18B20 дешевле всего купить на Алиэкспрессе, хотя он продается и в любых специализированных российских интернет-магазинах с ардуино. Приведем несколько ссылок для примера:

Особенности цифрового датчика DS18B20

  • Погрешность измерения не больше 0,5 С (для температур от -10С до +85С), что позволяет точно определить значение температуры. Не требуется дополнительная калибровка.
  • Температурный диапазон измерений лежит в пределах от -55 С до +125 С.
  • Датчик питается напряжением от 3,3В до 5В.
  • Можно программно задать максимальную разрешающую способность до 0,0625С, наибольшее разрешение 12 бит.
  • Присутствует функция тревожного сигнала.
  • Каждое устройство обладает своим уникальным серийным кодом.
  • Не требуются дополнительные внешние элементы.
  • Можно подключить сразу до 127 датчиков к одной линии связи.
  • Информация передается по протоколу 1-Wire.
  • Для присоединения к микроконтроллеру нужны только 3 провода.
  • Существует так называемый режим паразитного питания – в нем происходит питание напрямую от линии связи. Для подключения в этом случае нужны только 2 провода. Важно, что в этом режиме не гарантируется корректная работа при температурах выше 100С. Режим паразитного питания удобно обычно применяется для приложений с удаленным температурным датчиком.

Память датчика состоит из двух видов: оперативной и энергонезависимой – SRAM и EEPROM. В последнюю записываются регистры конфигурации и регистры TH, TL, которые могут использоваться как регистры общего назначения, если не используются для указания диапазона допустимых значений температуры.

Основной задачей DS18B20 является определение температуры и преобразование полученного результата в цифровой вид. Мы можем самостоятельно задать необходимое разрешение, установив количество бит точности – 9, 10, 11 и 12. В этих случаях разрешающие способности будут соответственно равны 0,5С, 0,25С, 0,125С и 0,0625С.

Во время включения питания датчик находится в состоянии покоя. Для начала измерения контроллер Ардуино выполняет команду «преобразование температуры». Полученный результат сохранится в 2 байтах регистра температуры, после чего датчик вернется в первоначальное состояние покоя. Если схема подключена в режиме внешнего питания, микроконтроллер регулирует состояние конвертации. Во время выполнения команды линия находится в низком состоянии, после окончания программы линия переходит в высокое состояние. Такой метод не допустим при питании от паразитной емкости, так как на шине постоянно должен сохраняться высокий уровень сигнала.

Полученные температурные измерения сохраняются в SRAM датчика. 1 и 2 байты сохраняют полученное значение температуры, 3 и 4 сохраняют пределы измерения, 5 и 6 зарезервированы, 7 и 8 используются для высокоточного определения температуры, последний 9 байт хранит устойчивый к помехам CRC код.

Подключение DS18B20 к Arduino

DS18B20 является цифровым датчиком. Цифровые датчики передают значение измеряемой температуры в виде определенного двоичного кода, который поступает на цифровые или аналоговые пины ардуино и затем декодируется. Коды могут быть самыми разными, ds18b20 работает по протоколу данных 1-Wire. Мы не будем вдаваться в подробности этого цифрового протокола, укажем лишь необходимый минимум для понимания принципов взаимодействия.

Обмен информацией в 1-Wire происходит благодаря следующим операциям:

  • Инициализация – определение последовательности сигналов, с которых начинается измерение и другие операции. Ведущее устройство подает импульс сброса, после этого датчик должен подать импульс присутствия, сообщающий о готовности к выполнению операции.
  • Запись данных – происходит передача байта данных в датчик.
  • Чтение данных – происходит прием байта из датчика.

Для работы с датчиком нам понадобится программное обеспечение:

  • Arduino IDE;
  • Библиотека OneWire, если используется несколько датчиков на шине, можно использовать библиотеку DallasTemperature. Она будет работать поверх OneWire.

Из оборудования понадобятся:

  • Один или несколько датчиков DS18B20;
  • Микроконтроллер Ардуино;
  • Коннекторы;
  • Резистор на 4,7 кОм (в случае подключения одного датчика пойдет резистор номиналом от 4 до 10K);
  • Монтажная плата;
  • USB-кабель для подключения к компьютеру.

К плате Ардуино UNO датчик подключается просто: GND с термодатчика присоединяется к GND Ардуино, Vdd подключается к 5V, Data – к любому цифровому пину.

Простейшая схема подключения цифрового датчика DS18B20 представлена на рисунке.

В режиме паразитного питания контакт Vdd с датчика подключается к GND на Ардуино – в этом случае пригодятся только два провода. Работу в паразитном режиме лучше не использовать без необходимости, так как могут ухудшиться быстродействие и стабильность.

Скетч для DS18B20

Алгоритм получения информации о температуре в скетче состоит из следующих этапов:

  • Определение адреса датчика, проверка его подключения.
  • На датчик подается команда с требованием прочитать температуру и выложить измеренное значение в регистр. Процедура происходит дольше остальных, на нее необходимо примерно 750 мс.
  • Подается команда на чтение информации из регистра и отправка полученного значения в «монитор порта»,
  • Если требуется, то производится конвертация в градусы Цельсия/Фаренгейта.

Пример простого скетча для DS18B20

Самый простой скетч для работы с цифровым датчиком выглядит следующим образом. (в скетче мы используем библиотеку OneWire, о которой поговорим подробнее чуть позже).

Скетч для работы с датчиком ds18b20 без delay

Можно немного усложнить программу для ds18b20, чтобы избавиться от функции delay(), тормозящей выполнение скетча.

Библиотека DallasTemperature и DS18b20

В своих скетчах мы можем использовать библиотеку DallasTemperature, упрощающую некоторые аспекты работы с датчиком ds18b20 по 1-Wire. Пример скетча:

Библиотека OneWire для работы с DS18B20

DS18B20 использует для обмена информацией с ардуино протокол 1-Wire, для которого уже написана отличная библиотека. Можно и нужно использовать ее, чтобы не реализовывать все функции вручную. Скачать OneWire можно здесь. Для установки библиотеки скачайте архив, распакуйте в папку library вашего каталога Arduino. Подключается библиотека с помощью команды #include

Основные команды библиотеки OneWire:

  • search(addressArray) – ищет температурный датчик, при нахождении в массив addressArray записывается его код, в ином случае – false.
  • reset_search() – производится поиск на первом приборе.
  • reset() – выполнение сброса шины перед тем, как связаться с устройством.
  • select(addressArray) – выбирается устройство после операции сброса, записывается его ROM код.
  • write(byte) – производится запись байта информации на устройство.
  • write(byte, 1) – аналогично write(byte), но в режиме паразитного питания.
  • read() – чтение байта информации с устройства.
  • crc8(dataArray, length) – вычисление CRC кода. dataArray – выбранный массив, length – длина кода.

Важно правильно настроить режим питания в скетче. Для паразитного питания в строке 65 нужно записать ds.write(0x44, 1);. Для внешнего питания в строке 65 должно быть записано ds.write(0x44).

Write позволяет передать команду на термодатчик. Основные команды, подаваемые в виде битов:

  • 0x44 – измерить температуру, записать полученное значение в SRAM.
  • 0x4E – запись 3 байта в третий, четвертый и пятый байты SRAM.
  • 0xBE – последовательное считывание 9 байт SRAM.
  • 0х48 – копирование третьего и четвертого байтов SRAM в EEPROM.
  • 0xB8 – копирование информации из EEPROM в третий и четвертый байты SRAM.
  • 0xB4 – возвращает тип питания (0 – паразитное, 1 – внешнее).

Подключение нескольких датчиков температуры DS18B20 к Ардуино

Все датчики DS18B20 подключаются параллельно, для них всех достаточно одного резистора. При помощи библиотеки OneWire можно одновременно считать все данные со всех датчиков. Если количество подключаемых датчиков более 10, нужно подобрать резистор с сопротивлением не более 1,6 кОм. Также для более точного измерения температуры нужно поставить дополнительный резистор на 100…120 Ом между выходом data на плате Ардуино и data на каждом датчике. Узнать, с какого датчика получено то или иное значение, можно с помощью уникального серийного 64-битного кода, который будет выдан в результате выполнения программы.

Для подключения температурных датчиков в нормальном режиме нужно использовать схему, представленную на рисунке.

В режиме паразитного питания схема выглядит иначе. Контакт Vdd практически не задействован, питание идет через выход data.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

Джек и Хосе, пара прекрасных хомячков, жили со мной более 100 дней и ночей. Их мягкая и белая шерсть давала мне покой и тепло, особенно во время программирования зимними вечерами.

Но на прошлой неделе произошла трагедия. Холодный воздух пришел из Сибири, и в Шэньчжэне сильно снизилась температура и влажность. Такая погода продлилась 10 дней. Температура держалась на уровне 10 градусов, и я сильно замерзал каждый день. Однако случилось страшное: Джек и Хосе, они покинули меня навсегда…

Это был печальный полдень. После их похорон, по пути домой, у меня появилась новая идея: я должен сделать домик с теплым полом и системой кондиционирования воздуха для моих будущих новых друзей.

Шаг 1: Подготовка модулей

Как специалист по разработке программного обеспечения я не очень хорошо разбираюсь в аппаратных средствах. Поэтому я решил применить наиболее удобную для использования платформу — Arduino.

После поисков в сети Интернет я выбрал следующие модули:

  1. Контроллер Crowduino: совместимая платформа Arduino, с некоторыми обновленными функциями для удобства использования.
  2. Датчик температуры и влажности и резистор номиналом 4,7 кОм. Этот датчик мне нужен для передачи в контроллер текущих значений температуры и влажности.
  3. LCD шилд с кнопками. С помощью данного LCD я смогу визуально контролировать текущую температуру и влажность.
  4. 2-канальный релейный модуль. Поскольку модуль Ultrasonic Nebulizer использует питание более 5 В, я использовал релейный модуль для контроля включения/выключения Ultrasonic Nebulizer.
  5. Модуль Ultrasonic Nebulizer для увеличения влажности воздуха.
  6. Шилд с винтовыми клеммами, данный шилд помогает мне удобно соединять провода.
  7. Тепловая пластина: данная тепловая пластина работает как нагреватель для домика домашних питомцев.
  8. Некоторое количество проводов.

В основном датчик температуры и влажности передает данные о том, как холодно вокруг, в контроллер Crowduino. Если контроллер Crowduino “считает”, что очень холодно, тогда он подключает тепловую пластину, чтобы согреть хомяка или модуль ultrasonic nebulizer для начала кондиционирования воздуха.

Шаг 2: Измерение температуры и влажности

Базовое подключение всех модулей (Crowduino, датчика температуры, релейного модуля и т.д.) показано на рисунке выше.

Сначала, подсоедините датчик температуры и влажности AM2302 к плате контроллера Crowduino. Используя проволочную перемычку, подсоедините выводы питания датчика AM2302 к выводам Vcc и GND контроллера Crowduino, далее подсоедините вывод “SIG” датчика AM2302 к A1 Crowduino.

Примите во внимание, что необходимо установить нагрузочный резистор 4,7 кОм между выводом “SIG” датчика AM230 и Vcc. В действительности вы можете найти множество других модулей температуры и влажности, в которые встроен нагрузочный резистор. В этом случае вам не нужно добавлять нагрузочный резистор самостоятельно, что упрощает дальнейшую сборку.

Шаг 3: Подсоедините реле к контроллеру Crowduino, для контроля модуля ultrasonic nebulizer и тепловых пластин.

Подсоедините выводы “IIN1”и “IN2” 2-канального релейного модуля к выводам A4 и A5 контроллера Crowduino (или к шилду с винтовыми клеммами), далее подключите питание к релейному модулю с помощью проволочных перемычек. Таким способом Crowduino может отдельно контролировать 2 реле для включения/выключения питания модуля ultrasonic nebulizer и тепловых пластин.

И, наконец, подсоедините модуль ultrasonic nebulizer и тепловые пластины к реле. Для модуля ultrasonic nebulizer, я отрезал его положительный проводник и подсоединил один его конец к выводу “COM” реле1 (вывод в середине). Далее второй конец я подсоединил к выводу ”NO” реле1. Для тепловых пластин будет легче припаять их выводы к DC гнезду. Подключите реле2 аналогичным способом, как для модуля ultrasonic nebulizer.

После подключения основные аппаратные средства для нового домика хомяков готовы.

Для контроля текущей температуры и влажности я добавил к своей системе LCD шилд с кнопками. Подсоедините шилд с кнопками к шилду с винтовыми клеммами. Фактически данный шилд является опциональным, поскольку не всем требуется визуальное отображение текущих значений температуры и влажности.

Шаг 4: Загрузка программ в Crowduino

Загрузите нижеуказанную программу и откройте ее на вашем Arduino IDE.

В данной программе я установил пороговое значение температуры величиной 9 градусов, а пороговое значение влажности в значение 45. То есть, когда температура, измеренная датчиком, ниже 9 градусов, контроллер crowduino будет контролировать релейный модуль для подачи питания на тепловые пластины, чтобы обогревать хомяков; когда относительная влажность упадет ниже 45% включится модуль ultrasonic nebulizer для увеличения влажности воздуха.

Естественно, если необходимо изменить пороговое значение температуры или влажности, просто измените параметры "temLowTrigger" и "humLowTrigger" температуры и влажности для включения тепловой пластины и модуля ultrasonic nebulizer.

Шаг 5: Тестирование и установка

Когда система работает, текущие значения температуры и влажности можно контролировать с помощью LCD шилда с кнопками.

Поместите тепловую пластину на дно домика хомяка. Также добавьте немного древесной муки, поскольку она позволяет сохранять тепло в домике и служит как одеяло. Тепловая пластина будет активирована, когда температура упадет ниже 9 градусов и останется включенной вплоть до температуры 40 градусов. Поместите модуль ultrasonic nebulizer в воду на глубину около 0,3 метра. Модуль активируется, когда относительная влажность упадет ниже 45%.

После тестирования, система работает превосходно. Тепловая пластина начнет нагрев, если температура низкая, при этом модуль ultrasonic nebulizer также начнет работать. При этом будет мигать светодиодный индикатор.

Я думаю, благодаря этой системе мой будущий хомяк будет просто счастлив!

Читайте также:  Набивка колбасы через мясорубку
Оценить статью
Добавить комментарий