Содержание
Если линии располагаются параллельно друг другу, их густота одинакова, то в этом случае говорят, что магнитное поле однородно. Если, наоборот, этого не выполняется, т.е. густота разная, линии искривлены, то такое поле будет называться неоднородным. В заключение урока хотелось бы обратить ваше внимание на следующие рисунки.
Рис. 6. Неоднородное магнитное поле
Во-первых, теперь мы уже знаем, чтомагнитные линии можно изображать стрелками. И рисунок представляет именно неоднородное магнитное поле. Густота в разных местах разная, значит, силовое воздействие этого поля на магнитную стрелку будет разным.
На следующем рисунке представлено уже однородное поле. Линии направлены в одну сторону, и их густота одинакова.
Рис. 7. Однородное магнитное поле
Однородное магнитное поле – это поле, которое встречается внутри катушки с большим числом витков или внутри прямолинейного, полосового магнита. Магнитное поле вне полосового магнита или то, что мы сегодня наблюдали на уроке, это поле неоднородное. Чтобы все это до конца усвоить, давайте посмотрим на таблицу.
Неоднородное магнитное поле | Однородное Магнитное поле | |
Сила, действующая в разных точках | Различна | Одинакова (как по модулю, так и по направлению) |
Линии магнитного поля | Искривлены, их густота различна | Параллельны, их густота одинакова |
Примеры | Поле магнита вне его Поле прямолинейного проводника с током | Поле внутри длинной катушки с большим числом витков. Поле внутри магнита |
Список дополнительной литературы:
Белкин И.К. Электрическое и магнитное поля // Квант. — 1984. — № 3. — С. 28-31. Кикоин А.К. Откуда берется магнетизм? // Квант. — 1992. — № 3. — С. 37-39,42 Леенсон И. Загадки магнитной стрелки // Квант. — 2009. — № 3. — С. 39-40. Элементарный учебник физики. Под ред. Г.С. Ландсберга. Т. 2. – М., 1974
Тема: Электромагнитные явления
Урок 40. Направление тока и направление линий его магнитного поля
Ерюткин Евгений Сергеевич
Опыт Эрстеда
В ходе урока мы определим взаимосвязь электрического тока и направления его магнитных линий. Для поиска закономерностей необходимо обратиться к опыту, который впервые был проведен в 1820 году датским ученым Эрстедом.
Рис. 1. Схема опыта Эрстеда
Обратимся к схеме опыта. В двух штативах был укреплен прямой проводник, подключенный к источнику тока. Под проводником располагалась магнитная стрелка, когда протекал электрический ток, магнитная стрелка располагалась перпендикулярно проводнику с током. Следующий эксперимент с изменением полярности. Электрический ток протекает в противоположную сторону. В результате направление тока в проводнике изменилось. Что произошло с магнитной стрелкой? Магнитная стрелка развернулась на 180 °. Обратите внимание, теперь южный полюс стрелки указывал туда, куда указывал северный, а северный – в противоположном направлении.
О чем этот эксперимент говорит? О том, что, когда изменяется направление электрического тока, изменяется направление магнитных линий.
Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы
Из опыта Эрстеда мы знаем, что магнитное поле порождается электрическим током.
Поскольку электрический ток – это направленное движение заряженных частиц, то можно сказать, что магнитное поле создается движущимися заряженными частицами, как положительными, так и отрицательными.
Согласно гипотезе Ампера в атомах и молекулах вещества в результате движения электронов возникают кольцевые токи . В магнитах эти элементарные кольцевые токи ориентированы одинаково (рис.1). Поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковые направления. Эти поля усиливают друг друга, создавая поле внутри и вокруг магнита.
Рис.1. Ориентация элементарных кольцевых токов в магните.
Для наглядного представления магнитного поля пользуются магнитными линиями (их называют также линиями магнитного поля). Напомним, что магнитные линии – это воображаемые линии, вдоль которых расположились бы маленькие магнитные стрелки, помещенные в магнитное поле . Магнитную линию можно провести через любую точку пространства, в котором существует магнитное поле. Магнитная линия (как прямолинейная, так и криволинейная) проводится так, чтобы в любой точке этой линии касательная к ней совпадала с осью магнитной стрелки, помещенной в эту точку (рис.2).
Магнитные линии являются замкнутыми. Например, картина магнитных линий прямого проводника с током представляет собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику (рис.3).
За направление магнитной линии в какой-либо ее точке условно принимают направление, которое указывает северный полюс магнитной стрелки, помещенной в эту точку (рис.2).
Рис.2. Направление магнитных линий.
Рис.3. Магнитные линии прямого проводника с током.
В тех областях пространства, где магнитное поле более сильное, магнитные линии изображают ближе друг к другу, т. е. гуще, чем в тех местах, где поле слабее (рис.4).
Таким образом, по картине магнитных линий можно судить не только о направлении, но и о величине магнитного поля (т. е. о том, в каких точках пространства поле действует на магнитную стрелку с большей силой, а в каких – с меньшей).
Рис.4. Плотность магнитных линий.
Вопрос: На рисунке 3 изображен участок ВС проводника с током. Вокруг него в одной из плоскостей показаны линии магнитного поля, созданного этим током. Существует ли магнитное поле в точке А?
Ответ: Конечно существует, независимо от того, нарисована там магнитная линия или нет.
Вопрос: На рисунке 3 изображены три точки: А, М, N. В какой из них магнитное поле тока, протекающего по проводнику ВС, будет действовать на магнитную стрелку с наибольшей силой? с наименьшей силой?
Ответ: Магнитное поля ослабевает с удалением от источника тока, поэтому в точке N магнитное поле тока будет действовать на магнитную стрелку с наибольшей силой, а в точке М – с наименьшей.
Неоднородное и однородное магнитное поле.
Рис.5. Магнитное поле соленоида и постоянного магнита.
Рассмотрим картину линий магнитного поля постоянного полосового магнита, изображенную справа на рисунке 5.
Из курса физики 8 класса мы знаем, что магнитные линии выходят из северного полюса магнита и входят в южный. Внутри магнита они направлены от южного полюса к северному. Магнитные линии не имеют ни начала, ни конца: они либо замкнуты, либо, как средняя линия на рисунке, идут из бесконечности в бесконечность.
Вне магнита магнитные линии расположены наиболее густо у его полюсов. Значит, возле полюсов поле самое сильное, а по мере удаления от полюсов оно ослабевает. Чем ближе к полюсу магнита расположена магнитная стрелка, тем с большей по модулю силой действует на нее поле магнита. Поскольку магнитные линии искривлены, то направление силы, с которой поле действует на стрелку, тоже меняется от точки к точке.
Таким образом, сила, с которой поле полосового магнита действует на помещенную в это поле магнитную стрелку, в разных точках поля может быть различной как по модулю, так и по направлению . Такое поле называется неоднородным . Линии неоднородного магнитного поля искривлены, их густота меняется от точки к точке .
Еще одним примером неоднородного магнитного поля может служить поле вокруг прямолинейного проводника с током (рис.3, рис.6). На рисунке 6 изображен участок такого проводника, расположенный перпендикулярно к плоскости чертежа. Кружочком обозначено сечение проводника. Точка означает, что ток направлен из-за чертежа к нам, как будто мы видим острие стрелы, указывающей направление тока (ток, направленный от нас за чертеж, обозначают крестиком, как будто мы видим хвостовое оперение стрелы, направленной по току).
Рис. 6. Магнитные линии прямого проводника с током.
Из этого рисунка видно, что магнитные линии поля, созданного прямолинейным проводником с током, представляют собой концентрические окружности, расстояние между которыми увеличивается по мере удаления от проводника.
В некоторой ограниченной области пространства можно создать однородное магнитное поле , т. е. поле, в любой точке которого сила действия на магнитную стрелку одинакова по модулю и направлению .
Рассмотрим магнитное поле, возникающее внутри так называемого соленоида (слева на рис.5), т. е. проволочной цилиндрической катушки с током. Поле внутри соленоида можно считать однородным, если длина соленоида значительно больше его диаметра (вне соленоида поле неоднородно, его магнитные линии расположены примерно так же, как у полосового магнита). Магнитные линии однородного магнитного поля параллельны друг другу и расположены с одинаковой густотой.
Однородным является также поле внутри постоянного полосового магнита в центральной его части (справа на рис.5).
Для изображения магнитного поля пользуются следующим приемом. Если линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас за чертеж, то их изображают крестиками (рис.7), а если из-за чертежа к нам – то точками (рис.8). Как и в случае с током, каждый крестик – это как бы видимое нами хвостовое оперение летящей от нас стрелы, а точка – острие стрелы, летящей к нам (на обоих рисунках направление стрел совпадает с направлением магнитных линий).
Рис.7. Линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа и направлены от нас.
Рис.8. Линии однородного магнитного поля расположены перпендикулярно к плоскости чертежа
и направлены из-за чертежа к нам.
А.В. Перышкин, Е.М. Гутник, Физика 9, Дрофа, 2006: § 43, Упр. 33; § 44, Упр. 34
Перейти к оглавлению конспектов за 9 класс.
Магнитное поле
Эмпирически показано, что перемещающиеся заряды действуют друг на друга иначе, чем стационарные. Помимо взаимодействия при помощи электрического поля, движущиеся заряды оказывают действия друг на друга магнитным полем.
Прежде чем говорить об однородности или неоднородности магнитного поля следует определить с помощью каких основных физических величин можно количественно описывать магнитное поле. Рассмотрим такие характеристики магнитного поля как:
- Вектор магнитной индукции поля.
- Вектор напряженности магнитного поля.
- Индукция магнитного поля
Магнитная сила ($vec
$vec
ight]left( 1
ight)$
где $vec
Уравнение (1) указывает нам на то, что магнитная сила всегда нормальна к вектору скорости и вектору магнитной индукции $vec $ Если движется положительный заряд, то векторы $vec
Попробуй обратиться за помощью к преподавателям
Вектор магнитной индукции ($vec$) является характеристикой силового действия магнитного поля. Величина магнитной индукции численно равна максимальной магнитной силе, которая действует на частицу с зарядом 1 Кл, которая движется со скоростью 1 м/с в вакууме, нормально вектору магнитной индукции.
Для магнитных полей выполняется принцип суперпозиции: магнитное поле, которое создается системой перемещающихся зарядов или рядом токов, находят как векторную сумму магнитных полей, которые созданы каждым отдельным источником поля.
Величина магнитной индукции поля зависит от магнитных свойств вещества, в котором поле локализовано. В веществе магнитное поле является суперпозицией внешнего магнитного поля и магнитных полей, создаваемых молекулярными токами.
Магнитное поле называют постоянным, если оно неизменно во времени.
Магнитные поля можно классифицировать, разделяя поля на:
Задай вопрос специалистам и получи
ответ уже через 15 минут!
- однородные;
- неоднородные.
Магнитное поле называют однородным, если векторы магнитной индукции во всех точках этого поля одинаковы:
Если $vec$≠const, то такое магнитное поле называется неоднородным.
Магнитное поле, как и электрическое можно изобразить графически при помощи силовых линий. Это делают для наглядности.
Линии магнитной индукции
Силовые линии магнитного поля называются линиями магнитной индукции. Касательные к этим линиям в любых точках имеют направления аналогичные направлениям векторов магнитной индукции в этих же точках.
Например, силовые линии прямого тока – это окружности с центрами на оси тока (рис.1).
Рисунок 1. Силовые линии прямого тока. Автор24 — интернет-биржа студенческих работ
У всех постоянных магнитных полей силовые линии замкнутые (или начинаются и заканчиваются в бесконечности). Это свойство качественного отличия постоянного электрического поля от магнитного.
Направление силовых линий магнитного поля связано с правилом буравчика.
Силовые линии постоянных магнитов начинаются на его северных полюсах и приходят к южным полюсам. Внутри постоянных магнитов силовые линии замыкаются.
Представление магнитных полей при помощи линий индукции говорит не только о направлении $vec$, но и модуле магнитной индукции. Линии магнитной индукции магнитного поля наносят на чертеж, изображая поле, такой густоты, что количество их, пронизывающих единичную площадку, нормальную к этим линиям, было пропорционально модулю магнитной индукции. На таких чертежах там, где магнитная индукция увеличивается по модулю, силовые линии сгущаются. Там, где модуль магнитной индукции уменьшается, силовые линии разрежаются.
Количество силовых линий, которые пересекают поверхность, называют магнитным потоком:
$Ф=intlimits_S <vecdvecleft( 3
ight).>$
В однородном магнитном поле силовые линии изображаются как система параллельных прямых, находящихся на равных расстояниях (рис.2).
Рисунок 2. Однородное магнитное поле. Автор24 — интернет-биржа студенческих работ
Отличительные черты однородного магнитного поля:
- Силовые линии магнитного поля — это параллельные прямые.
- Плотность линий магнитной индукции везде одна.
- Сила воздействия поля на магнитную стрелку в любой точке поля одинакова по модулю и направлению.
Неоднородное магнитное поле изображено на рис.3.
Рисунок 3. Неоднородное магнитное поле. Автор24 — интернет-биржа студенческих работ
Отличительные черты неоднородного магнитного поля:
- Искривленность линий магнитной индукции.
- В различных точках поля густота силовых линий различны.
- Сила воздействия магнитного поля на магнитную стрелку является разной в разных точках поля по модулю и направлению.
Напряженность магнитного поля
Если магнитное поле находится в веществе (магнитная проницаемость $mu
e 1)$;), то в таком веществе происходит процесс намагничивания. В этом случае во всем объеме вещества возникают молекулярные токи, порождающие свое магнитное поле. Магнитное поле в веществе получается равным сумме внешнего поля (или поля в вакууме) $vec_<0>$ и поля молекулярных токов $vec_
Магнитные свойства вещества характеризует такая физическая величина, как магнитная проницаемость $mu$:
Вектор напряженности магнитного поля ($vec
где $vec
_
Связь между $vec$ и $vec
Для магнитного поля в однородном изотропном магнетике напряженность магнитного поля не зависит от магнитной проницаемости вещества и равна напряженности в избранной точке поля для вакуума, если поле создают те же источники.
Для однородного магнитного поля имеем:
Относительно неоднородного магнитного поля можно сказать, что:
Примеры однородных магнитных полей
Однородных магнитных полей встречается совсем немного. К однородным магнитным полям относят:
- магнитное поле внутри полосового магнита,
- внутри длинного соленоида, если его длину можно считать намного большей, чем его диаметр.
Примеры неоднородных магнитных полей
К неоднородным магнитным полям относится большинство магнитных полей, например:
- магнитное поле проводника с током,
- вокруг постоянного магнита,
- поле тороида,
- магнитное поле витка с током и т.д.
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь