Мнимые источники света это

Мнимые источники света это

Содержание

Рис. 13.1 Рис. 13.2

Мы с вами знаем, что если перед плоским зеркалом поместить точечный источник света S, то за плоскостью зеркала получится мнимое изображение этого источника S¢ (рис. 13.1). При этом изображение S¢ будет зеркально симметричным источнику S относительно плоскости зеркала.

Возникает вопрос: что произойдет, если на плоское зеркало направить сходящийся пучок лучей, который в отсутствии зеркала сфокусировался бы в точке S, расположенной за плоскостью зеркала (рис. 13.2). Иными словами, какое изображение дает в плоском зеркале мнимый источник?

Рис. 13.3

Читатель: По-моему, достаточно построить ход произвольного отраженного от зеркала луча (рис. 13.3). Видно, что DABS¢ = DABS как прямоугольные, имеющие общий катет АВ и равные острые углы: ÐВАS¢ = ÐBAS = 90°– a, где a – угол падения луча на зеркало. Тогда S¢B = BS. Поскольку ход наших рассуждений не зависит от величины угла a, то можно утверждать, что все лучи, идущие к мнимому источнику S, отражаются так, что отраженные лучи пересекаются в точке S¢. Значит, точка S¢ – это изображение мнимого источника S.

Автор: Вы правы! Подчеркнем, что это изображение симметрично источнику относительно плоскости зеркала.

Читатель: Получается, что мнимый источник дает в плоскости зеркала действительное изображение, а действительный источник – наоборот, мнимое?

Автор: Именно так! Заметим, что рассеивающая линза в этом смысле ведет себя очень похоже: действительный источник всегда дает в ней мнимое изображение, а вот мнимый источник может дать и действительное (хотя и не всегда).

Рис. 13.4 Рис. 13.5

Задача 13.1. Постройте ход лучей и определите положение изображения предмета АВ (рис. 13.4) в оптической системе, состоящей из собирающей линзы и плоского зеркала. Предмет АВ находится на расстоянии 1,5F от линзы.

Читайте также:  Кондиционер general climate отзывы

Решение. Прежде чем выполнять построение, решим вспомогательную задачу: на собирающую линзу падает сходящийся пучок лучей. Построим изображение мнимого источника (рис. 13.5).

Направим в точку S еще один луч – луч 3, параллельно главной оптической оси (рис. 13.6). После преломления он пройдет через главный фокус F (луч 3¢). Поскольку луч 1 проходит через линзу не преломляясь, то пересечение луча 3¢ с лучом 1 – это и есть искомое изображение (действительное!) S¢ мнимого источника S.

Рис. 13.6

Теперь перейдем к решению нашей задачи (см. рис. 13.4). Будем решать ее поэтапно. Сначала построим изображение предмета АВ в линзе так, как если бы никакого зеркала не было (рис. 13.7). Увеличенное перевернутое действительное изображение получилось бы на расстоянии 3F за плоскостью зеркала.

Рис. 13.7

Но на пути сходящегося пучка лучей стоит плоское зеркало, поэтому изображение А¢В¢ оказывается мнимым источником для плоского зеркала. И этот мнимый источник должен давать действительное симметричное себе изображение А²В² относительно плоскости зеркала (рис. 13.8).

Рис. 13.8

Читатель: Подождите! Это действительное изображение А²В² получилось бы, если бы на пути лучей, отраженных от зеркала не стояла бы линза!

Автор: Вы правы! Для линзы изображение А²В² является мнимым источником. И теперь нам осталось только построить изображение этого мнимого источника.

Рис. 13.9

Направим в точку В² луч 1, проходящий через оптический центр линзы, и луч 2, параллельный главной оптической оси (рис. 13.9). После преломления луч 2 пройдет через главный фокус линзы (луч 2¢), а точка пересечения лучей 2¢ и 1 – это искомое изображение В¢¢¢ точки В².

Итак, действительное изображение А¢¢¢В¢¢¢ получилось перевернутым и расположенным на расстоянии F/2 перед плоскостью линзы. Полная картина хода лучей показана на рис. 13.10.

Читатель: А если бы предмет АВ находился к линзе ближе, чем фокусное расстояние (рис. 13.11)?

Рис. 13.11 Рис. 13.12

Автор: В этом случае линза давала бы мнимое изображение перед плоскостью линзы, которое бы «воспринималось» зеркалом как действительный источник (рис 13.12). Зеркало давало бы мнимое изображение этого источника, а линза «воспринимала» бы это мнимое изображение как действительный источник. Впрочем, все эти построения вы уже можете сделать самостоятельно.

СТОП! Решите самостоятельно: В1, С1.

Задача 13.2. За собирающей линзой с фокусным расстоянием F = 30 см расположено на расстоянии а = 15 см плоское зеркало, перпендикулярное главной оптической оси линзы. Где находится изображение предмета, расположенного перед линзой на расстоянии d = 15 см? Каким будет изображение – действительным или мнимым?

F = 30 см а = 15 см d = 15 см Решение. Будем действовать последовательно. 1. Сначала найдем, где будет располагаться изображение предмета, даваемое линзой (на зеркало пока внимание не обращаем). Применим формулу линзы:
f = ?

см.

Значит, изображение мнимое и находится перед линзой на расстоянии | f | = 30 см. На рис. 13.13 – это отрезок А1В1.

2. Лучи, в первый раз прошедшие от предмета АВ через линзу, падают на поверхность зеркала так, как если бы они исходили от действительного предмета А1В1, расположенного на расстоянии | f | + a = 30 + 15 = 45 см от зеркала. Значит, зеркало дает мнимое изображение А2В2 на расстоянии а + (| f | + a) = 15 + (30 + 15) = 60 см за плоскостью линзы.

3. Теперь рассмотрим лучи, которые падают на линзу после отражения от зеркала. Линза «воспринимает» их так, как если бы они исходили от предмета А2В2, расположенного на расстоянии 60 см от линзы. (В данном случае 60 см – это двойное фокусное расстояние, т.е. 2F = 60 см.) Поэтому, даже не используя формулу линзы, можно утверждать, что действительное изображение получится на расстоянии 2F = 60 см перед плоскостью линзы. Причем этот изображение (А3В3 на рис. 13.13) будет перевернутым.

Читатель: Получается, что мнимое изображение в зеркале А2В2 дает действительное изображение в линзе?

Автор: Именно так.

Ответ: получаются три изображения: а) мнимое на расстоянии 30 см перед линзой; 2) мнимое на расстоянии 60 см за линзой; 3) действительное на расстоянии 60 см перед линзой.

СТОП! Решите самостоятельно: В2, С2, С4.

Задача 13.3. Перед собирающей линзой с фокусным расстоянием F находится точечный источник света на расстоянии 2F перед плоскостью линзы. За линзой под углом a = 45° к главной оптической оси расположено плоское зеркало. Плоскость зеркала пересекает главную оптическую ось линзы в главном фокусе (рис. 13.14). Где находится изображение?

Рис. 13.14

a = 45° d = 2F Решение. Точечный источник S образовал бы действительное изображение S1 на расстоянии 2F за плоскостью линзы, если бы на пути лучей не было зеркала (рис. 13.15).

Рис. 13.15

Таким образом, для зеркала точка S1 – это мнимый источник, значит, зеркало дает действительное изображение в точке S2, симметричной точке S1 относительно плоскости зеркала.

Мы нашли положение точки S2 – она находится на перпендикуляре к главной оптической оси линзы на расстоянии F от главного фокуса.

Ответ: действительное изображение находится на перпендикуляре к главной оптической оси линзы на расстоянии F от главного фокуса.

СТОП! Решите самостоятельно: В4, С5, D1.

Дата добавления: 2016-04-11 ; просмотров: 2483 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Общие понятия

Свет — это результат физического процесса, происходящего в атомах вещества. Атомы, получая энергию извне (нагрев, облучение), часть ее передают электронам. Электроны сначала возбуждаются, а затем начинают терять энергию, переходя на нижние энергетические уровни. Каждый переход происходит с излучением фотонов — частиц света, которые воспринимает наш глаз. Фотоны могут проявлять себя либо как волна, либо как частица.

Одной из главных характеристик электромагнитного излучения является длина волны. К видимому свету относятся излучения с длиной волны от 8*10 -7 до 4*10 -7 м, то есть от красного до фиолетового света.

Свет распространяется в вакууме со скоростью 300 000 км/с или 3*10 8 см/с. Это самая большая скорость в природе для любых частиц и взаимодействий.

Первые источники видимого света, которые человек изобрел для собственных нужд, использовали разные виды горючего топлива: дерево, жир, сало. В конце XIII швейцарец Аргант изобрел лампу с фитилем, в которую в качестве топлива заливался керосин. Американец Томас Эдисон изобрел лампочку накаливания в конце XIX века. И если лампа с фитилем давно превратилась в настоящий антиквариат, то лампочка накаливания до сих пор верой и правдой служит человеку.

Естественные источники света

К естественным относятся источники света, дарованные нам природой:

  • Солнце;
  • Луна. Правда, сама она не излучает, а только отражает солнечный свет, но это не мешает считать ее прекрасным, естественным источником света в ночное время. Кстати, из космоса наша Земля смотрится также, отражая солнечный свет;
  • Звезды на ночном небосклоне;
  • Метеориты, кометы, болиды;
  • Полярное сияние;
  • Разряды атмосферного электричества (гроза, молния);
  • Объекты животного (глубоководные медузы, моллюски, планктон, лесные светлячки) и растительного миров (некоторые грибы), способные излучать свет.

Рис. 1. Примеры естественных источников света.

Искусственные источники света

Этот вид источников является результатом интеллектуальной деятельности многих поколений учений и изобретателей:

  • Лампы накаливания. Они излучают свет вследствие разогрева нити накаливания из тугоплавких металлов (например, вольфрам) до температуры в несколько тысяч градусов. Нить накаливания помещена в стеклянную колбу, из которой предварительно откачивают воздух и наполняют инертным газом (гелий, неон), предотвращающим перегорание нити;
  • Галогеновые лампы. Это усовершенствованный вариант ламп накаливания. В них вместе с инертным газом добавляют галогеновый газ (бром или йод). Этот прием позволяет продлить срок эксплуатации лампы. Еще вместо обычного стекла для корпуса используют толстое кварцевое, которое выдерживает более высокие температуры, чем обычное стекло;
  • Газоразрядные лампы. Этот вид источников создает видимое излучение за счет электрического разряда в смеси газов с добавлением паров некоторых металлов. Эти лампы чаще всего используются для уличного освещения и освещения производственных помещений. Неоновую световую рекламу изготавливают по этой технологии;
  • Люминесцентные лампы. Внутренняя поверхность таких ламп покрыта специальным химическим составом, который называется люминофором. Сначала происходит электрический разряд в газе, как в обычных газоразрядных лампах. В разряде есть высокоэнергетичные фотоны ультрафиолетового диапазона, невидимые глазу. Эти фотоны возбуждают атомы и молекулы люминофора, которые излучают видимый на выходе свет. Эти лампы массово используются для освещения офисов, магазинов, производственных помещений.
  • Светодиоды или LED-источники. Это самый современный, массовый полупроводниковый источник света. Излучение возникает в результате протекания электрического тока через pn переход полупроводникового диода. Выпускаются лампочки дающие основные цвета: белый (дневной), зеленый, красный, синий, голубой. Использование этих ламп дает существенную экономию электроэнергии при эксплуатации осветительных приборов. Светодиоды имеют огромный срок службы (свыше 50000 часов) по сравнению с прочими источниками;
  • Лазеры. Этот источник света для видимого диапазона в последние годы становится массовым в связи с использованием малогабаритных полупроводниковых лазеров, которые позволили создать полезные, безопасные в обращении устройства.

Рис. 2. Примеры искусственных источников света.

Примером использования современного источника света может служить лазерный нивелир, который позволяет быстро производить измерение расстояний, углов, выставлять уровни (горизонтальные, вертикальные).

Рис. 3. Лазерный нивелир.

Что мы узнали?

Итак, мы узнали, что источники света бывают искусственные и естественные. Естественные источники существуют независимо от деятельности человека. Искусственные источники появились благодаря умственной деятельности человека, разработке новых технологий и материалов. Большой прогресс в последние годы произошел в области производства светодиодов.

Направление движения энергии световой волны определяется вектором Пойнтинга (система единиц СГС Гаусса), здесь — скорость света в вакууме, и — векторные напряженности электрического и магнитного полей. Длина вектора Пойнтинга равна плотности потока энергии, то есть количеству энергии, которое в единицу времени протекает через единичную площадку перпендикулярную вектору . В изотропной среде направление движения поверхности фиксированной фазы совпадает с направлением движения энергии световой волны. В кристалле эти направления могут не совпадать. Далее будем рассматривать изотропную среду.

Световые лучи.

Линии векторного поля , вдоль которых распространяется свет, называются лучами. Если поверхности равных фаз представляют собой параллельные плоскости, то волна называется плоской. Плоской волне соответствует параллельный пучок лучей, так как лучи в изотропной среде перпендикулярны поверхностям равных фаз. Сферической волной называется волна с поверхностями равных фаз сферической формы. Ей соответствует пучок лучей, выходящих из одной точки или собирающихся в одну точку. В этих двух случаях говорят соответственно о расходящейся и о сходящейся сферической волне.

Приближение геометрической оптики.

Если длина световой волны очень мала по сравнению со всеми размерами оптических приборов, то явлениями дифракции и интерференции можно пренебречь. Такое рассмотрение распространения света называется приближением геометрической оптики.

Геометрическая оптика обычно ограничивается рассмотрением распространения света в однородных средах и предметах, состоящих из однородных сред. Распространение света в среде с плавно изменяющимся показателем преломления описывается уравнением эйконала.

Отражение и преломление света.

Если световая волна распространяется в однородной среде без препятствий, то волна распространяется по прямым линиям — лучам. На границе раздела двух однородных сред лучи отражаются и преломляются (рис.1). Отраженный (3) и преломленный (2) лучи находятся в одной плоскости с падающим лучом (1) и перпендикуляром к границе раздела двух сред ( ). Угол падения равен углу отражения . Угол преломления можно найти из равенства

где и — показатели преломления первой и второй среды.

Отражение от плоского зеркала.

Плоское зеркало, как и сферическое, отражает лучи света в соответствии с законом отражения (угол падения равен углу отражения). Свет после отражения от плоского зеркала во всех смыслах распространяется так, как если бы вместо зеркала стояло окошко, а источник света располагался бы за поверхностью зеркала, за окошком. Интересно, что изображение в зеркале находится не просто в другом месте, оно вывернуто "наизнанку", при этом "правое" и "левое" меняются местами. Например, правая спираль становится левой спиралью.

Преломление света, также как и отражение, можно рассматривать, как "кажущееся" изменение положения источника света. Этот факт проявляется в кажущемся изломе прямой палки, наполовину опущенной в воду под углом к поверхности воды. Мнимое положение источника света в данном случае будет различаться для лучей, падающих на границу раздела двух сред под различными углами. По этой причине обычно избегают говорить о мнимом положении источника света при преломлении.

Призма.

В задачах с призмами поворот света призмой можно рассматривать как два последовательных преломления света на плоских гранях призмы при входе света в призму и при его выходе.

Особый интерес представляет частный случай призмы с малым углом при вершине ( на рис. 2). Такую призму называют тонкой призмой. Обычно рассматриваются задачи, в которых свет падает на тонкую призму почти перпендикулярно ее поверхности. При этом за два преломления лучи света поворачивают на малый угол в плоскости перпендикулярной ребру призмы в сторону утолщения призмы (рис. 2). Угол поворота не зависит от угла падения света в приближении малых углов падения. Это означает, что призма поворачивает "кажущееся" положение источника света на угол в плоскости перпендикулярной ребру призмы.

Из двух таких тонких призм состоит, в частности, бипризма Френеля (рис. 3), проходя через которую свет от точечного источника распространяется далее так, как если бы свет излучался двумя точечными когерентными источниками.

Оптическая ось.

Оптической осью называется прямая линия, проходящая через центры кривизны отражающих и преломляющих поверхностей. Если система имеет оптическую ось, то это центрированная оптическая система [2].

Линза.

Обычно прохождение света через линзу рассматривается в приближении параксиальной оптики, это означает, что направление распространения света всегда составляет малый угол с оптической осью, и лучи пересекают любую поверхность на малом расстоянии от оптической оси.

Линза может быть собирающей или рассеивающей.

Лучи, параллельные оптической оси, после собирающей линзы проходят через одну и ту же точку. Эта точка называется фокусом линзы. Расстояние от линзы до ее фокуса называется фокусным расстоянием. Плоскость, перпендикулярная оптической оси и проходящая через фокус линзы, называется фокальной плоскостью. Параллельный пучок лучей, наклоненный к оптической оси, собирается за линзой в одну точку ( на рис. 4) в фокальной плоскости линзы.

Рассеивающая линза преобразует параллельный оптической оси пучок лучей в расходящийся пучок (рис. 5). Если расходящиеся лучи продолжить назад, то они пересекутся в одной точке — фокусе рассеивающей линзы. При небольшом повороте пучка параллельных лучей точка пересечения перемещается по фокальной плоскости рассеивающей линзы.

Построение изображений.

В задачах на построение изображений подразумевается, что протяженный источник света состоит из некогерентных точечных источников. В этом случае изображение протяженного источника света состоит из изображений каждой точки источника, полученных независимо друг от друга.

Изображение точечного источника — это точка пересечения всех лучей после прохождения через систему, лучей испущенных точечным источником света. Точечный источник испускает сферическую световую волну. В приближении параксиальной оптики сферическая волна, проходя через линзу (рис. 6), распространяется и далее в виде сферической волны, но с другим значением радиуса кривизны. Лучи за линзой либо сходятся в одну точку (рис. 6а), которую называют действительным изображением источника (точка ), либо расходятся (рис. 6б). В последнем случае продолжения лучей назад пересекаются в некоторой точке , которая называется мнимым изображением источника света.

В параксиальном приближении все лучи, исходящие из одной точки до линзы, после линзы пересекаются в одной точке, поэтому для построения изображения точечного источника достаточно найти точку пересечения "удобных нам" двух лучей, эта точка и будет изображением.

Если перпендикулярно оптической оси поставить лист бумаги (экран) так, чтобы изображение точечного источника попало на экран, то в случае действительного изображения на экране будет видна светящаяся точка, а в случае мнимого изображения — нет.

Построение изображения в тонкой линзе.

Есть три луча, удобных для построения изображения точечного источника света в тонкой линзе.

Первый луч проходит через центр линзы. После линзы он не изменяет своего направления (рис. 7) как для собирающей так и для рассеивающей линзы. Это справедливо только в том случае, если среда с обеих сторон линзы имеет одинаковый показатель преломления. Два других удобных луча рассмотрим на примере собирающей линзы. Один из них проходит через передний фокус (рис. 8а), или его продолжение назад проходит через передний фокус (рис. 8б). После линзы такой луч пойдет параллельно оптической оси. Другой луч проходит до линзы параллельно оптической оси, а после линзы через задний фокус (рис. 8в).

Удобные для построения изображения лучи в случае рассеивающей линзы показаны на рис. 9а,9б.

Точка пересечения, мнимого или действительного, любой пары из этих трех лучей, прошедших линзу, совпадает с изображением источника.

В задачах по оптике иногда возникает потребность найти ход луча не для одного из удобных нам трех лучей, а для произвольного луча (1 на рис. 10), направление которого до линзы определено условиями задачи.

В таком случае полезно рассмотреть, например, параллельный ему луч (2 на рис. 10б), проходящий через центр линзы, независимо от того есть или нет такой луч на самом деле.

Параллельные лучи собираются за линзой в фокальной плоскости. Эту точку ( на рис. 10б) можно найти как точку пересечения фокальной плоскости и вспомогательного луча 2, проходящего линзу без изменения направления. Вторая точка, необходимая и достаточная для построения хода луча 1 после линзы, это точка на тонкой линзе ( на рис. 10б), в которую упирается луч 1 с той стороны, где его направление известно.

Построение изображения в толстой линзе.

Тонкая линза — линза, толщина которой много меньше ее фокусного расстояния. Если линзу нельзя считать тонкой, то каждую из двух сферических поверхностей линзы можно рассматривать как отдельную тонкую линзу.

Тогда изображение в толстой линзе можно найти как изображение изображения. Первая сферическая поверхность толстой линзы дает изображение источника как изображение в тонкой линзе. Вторая сферическая поверхность дает изображение этого изображения.

Другой подход при построении изображений состоит в том, что вводится понятие главных плоскостей центрированной оптической системы, частным случаем которой может быть толстая линза. Центрированная оптическая система, которая может состоять и из большого числа линз, полностью характеризуется двумя фокальными и двумя главными плоскостями. Полностью характеризуется в том смысле, что знание положения этих четырех плоскостей достаточно для построения изображений. Все четыре плоскости перпендикулярны оптической оси, следовательно свойства оптической системы полностью определяются четырьмя точками пересечения четырех плоскостей с оптической осью. Эти точки называются кардинальными точками системы.

Для тонкой линзы обе главные плоскости совпадают с положением самой линзы. Для более сложных оптических систем существуют формулы расчета положения кардинальных точек через радиусы кривизны поверхностей линз и показатели их преломления [2].

Для построения изображения точечного источника достаточно рассмотреть прохождение через оптическую систему двух удобных нам лучей и найти точку их пересечения после линзы, либо точку пересечения продолжений лучей назад (для мнимого изображения).

Построение хода лучей проводится так, как будто между главными плоскостями системы находится тонкая линза, а пространство между главными плоскостями отсутствует. Пример построения приведен на рис. 11. и — главные плоскости системы.

Задача прохождения света через центрированную оптическую систему может быть решена не только геометрическим построением хода лучей, но и аналитически. Для аналитического решения задач удобен матричный метод [2].

Формулы тонкой линзы.

Если в задаче требуется аналитический результат, а не построение изображения, то для решения обычно достаточно трех формул:

Здесь — оптическая сила линзы, — фокусное расстояние, — расстояние от линзы до источника света, — расстояние от линзы до изображения, и — радиусы кривизны обоих поверхностей линзы, — показатель преломления материала линзы.

В этих формулах все величины с размерностью длины могут принимать как положительные, так и отрицательные значения. Фокусное расстояние положительно для собирающей линзы, положительно для действительного изображения, и положительны для двояковыпуклой линзы. Расстояние от линзы до источника — положительная величина, но и тут можно представить себе мнимый точечный источник, для которого это расстояние будет отрицательным.

Реже встречаются задачи, в которых показатели преломления среды с двух сторон от линзы различаются. Тогда потребуются следующие формулы:

Может быть полезна и формула для оптической силы одной сферической поверхности, в частности при рассмотрении толстой линзы как двух сферических поверхностей:

Сферическое зеркало.

Чтобы удовлетворить приближению параксиальной оптики, нужно потребовать, чтобы сферическое зеркало было малой частью сферы. Другими словами, размер зеркала должен быть много меньше радиуса кривизны сферы.

Сферическое зеркало отражает световые лучи аналогично оптической системе, состоящей из тонкой линзы и вплотную поставленного плоского зеркала. Вогнутое зеркало аналогично собирающей линзе, выпуклое — рассеивающей.

Модуль фокусного расстояния сферического зеркала равен половине радиуса кривизны сферы

Фокус расположен посередине между зеркалом и центром сферы.

На рис. 12а,б приведены примеры построения изображений точечного источника света в сферическом зеркале.

Оценить статью
Добавить комментарий