Материалам для электронагревательных элементов предъявляют требования

Материалам для электронагревательных элементов предъявляют требования

Нагревательные элементы (нагреватели)

Проволочные зигзагообразные нагреватели навешивают на стенках и своде печи на жаропрочных крючках, подовые нагреватели укладывают свободно на фасонные кирпичи.

Спиральные нагреватели в низкотемпературных печах подвешивают на фасонных керамических втулках на керамических трубках 2 или на полочках футеровки. В среднетемпературных печах спиральные нагреватели укладывают также в пазах 3 футеровки.

Ленточные нагреватели (изготовленные из ленты или литые) крепят на стенках и своде обычно на специальных керамических крючках; на поду их укладывают на керамических опорах.

Материалы для нагревательных элементов

Нагревательные элементы, как и жароупорные, работают в зоне повышенных температур. В электропечестроении кроме вышеперечисленных, предъявляют к ним еще ряд требований, связанных их электрическими свойствами. Таким образом, данные материалы должны обладать:

1. Жаростойкость, т.е. они не должны окисляться под действием кислородного воздуха, высоких температур.

2. Достаточная жаропрочность может быть невелика, достаточно, чтобы нагреватели поддерживали сами себя.

3. Большое удельное сопротивление. Это объясняется тем, что тонкие и длинные нагреватели не прочны, не удобны конструктивно, имеют малый срок службы.

4. Малый температурный коэффициент сопротивления (ТКС). Это необходимо для того, чтобы сократить пусковые толчки тока. Толчки могут достигать 4-5 кратного значения и длиться длительное время из-за большой инерционности печи.

5. Электрические свойства нагревателей должны быть постоянны. 6. Нагреватели должны иметь постоянный размер. 7. Материалы должны хорошо обрабатываться.

Основными материалами для нагревательных элементов являются сплавы никеля, хрома, железа (нихромы). Они могут использоваться до 1100 °С. При t° до 600 °С используются фехраль и константан. Для печей с рабочими температурами выше 1100 — 1150° С применяют неметаллические нагреватели в виде стержней: карборундовые, основу которых составляет карбид кремния (до 1300—1400 °С), и из дисилицида молибдена (до 1400—1500 °С). В высокотемпературных вакуумных печах при t° от 2200 до 3000 °С применяются нагреватели из тантала, молибдена, вольфрама, угольные или графитовые нагреватели. Наиболее распространены в высокотемпературных печах нагреватели из молибдена (до 2000 °С в защитной среде) и вольфрама (до 2500 °С в защитной среде).

Электрическая мощность, потребляемая нагревателями, составляет для небольших мощностей единицы киловатт, а для крупных печей может достигать тысячи киловатт и более.

Трубчатые электронагреватели (ТЭНы)

В печах с электрокалориферами и соляных ваннах (при температурах до 600 °С) часто применяют трубчатые электронагреватели (ТЭН).

Нагреватель состоит из металлической трубки , по оси которой расположена нихромовая спираль 2, приваренная к выводным концам 5 нагревателя. Трубка заполнена кристаллической окисью магния (периклазом). В концах трубки закреплены выводные изоляторы.

Нагревательные элементы электрических печей сопротивления рабо­тают в очень тяжелых условиях и поэтому они прежде всего должны быть жаростойкими с тем, чтобы не окисляться при высокой темпера­туре, и достаточно жаропрочными с тем, чтобы не деформироваться при высокой температуре под действием, по крайней мере, собственно­го веса.

Нагреватели не должны расти со временем, так как это приводит к необходимости предусматривать конструктивные меры для предотвра­щения их удлинения. Из металлических материалов для нагревателей обычно изготовляют ленту и проволоку различных сечений, навивают спирали и т. д. Отсюда следует, что материалы для нагревателей долж­ны быть механически обрабатываемыми к хорошо соединяться посред­ством сварки.

Определенным требованиям должны отвечать и электрические свой­ства материалов для нагревательных элементов: они должны обладать большим электрическим сопротивлением, чтобы обеспечить небольшие размеры нагревателей и их удобное размещение в печи; малым темпе­ратурным коэффициентом увеличения электрического сопротивления. Поэтому большинство материалов для нагревателей представляет собой сплавы, так как их электрическое сопротивление увеличивается с ростом температуры гораздо меньше, чем сопротивление чистых металлов.

Основными металлическими материалами для нагревательных эле­ментов, специально разработанными для этой цели и поэтому в макси­мальной степени удовлетворяющими предъявляемым к ним требовани­ям, являются хромоникелевые сплавы, известные под названием двой­ные и тройные нихромы. В состав двойных сплавов входят в основном никель и хром, содержание железа в них очень мало (до 3 %).

Добавление железа в сплав несколько улучшает его обрабатывае­мость и существенно снижает стоимость, но повышает температурный коэффициент увеличения электрического сопротивления и значительно снижает жаростойкость. Двойные сплавы могут работать при темпера­турах до 1150—1200°С, тройные до 1000 °С. Нихром обладает хороши­ми механическими свойствами и довольно легко обрабатывается. Элек­трические свойства нихрома вполне удовлетворительные: его удельное сопротивление велико, температурный коэффициент увеличения электри­ческого сопротивления мал, ему не присущи явления старения и роста. Так,, электрическое сопротивление различных нихромов возрастает на 3—10 % при нагреве до максимальной рабочей температуры.

Железохромоалюминиевые сплавы, не содержащие дорогого и дефи­цитного никеля, обладают достаточно высокой жаропрочностью и их удельное сопротивление почти не зависит от температуры. Сплав Х23Ю5 имеет максимальную рабочую температуру 1200 °С, а сплав Х27Ю5Т 1300 °С. Но железохромоалюминиевые сплавы очень непрочны и хрупки, особенно после нескольких нагревов, а в процессе службы они удлиняются (иногда на 30—40 %) и деформируются. При температурах свыше 1100 °С эти сплавы чувствительны к оксидам железа и кремнезему, разрушающим защитную пленку из оксидов алюминия и хрома. Поэтому футеровка печей в местах соприкосновения с нагревателями из этих материалов должна быть выполнена из чистых высокоглиноземистых материалов.

Хромоникелевые и железохромоалюминиевые сплавы для изготовле­ния нагревательных элементов выпускают в виде холоднотянутой и горячекатаной проволоки диаметром 0,5—14 мм, а также в виде ленты с размерами поперечного сечения от 1´10 до 4´40 мм.

Металлические нагревательные элементы для высокотемпературных Промышленных печей выполняют из чистого молибдена (до 1700 °С) и вольфрама (до 2500°С). Эти материалы могут работать только в ва­кууме или в аргоне и водороде. Нагревательные элементы из молиб­дена допускают контакт только с чистыми высокоглиноземистыми огне­упорами, а элементы из вольфрама используются исключительно в ва­куумных печах с экранной теплоизоляцией.

Молибден и вольфрам для электронагревателей выпускают в виде проволоки, листов и сетки. Электрическое сопротивление вольфрама и молибдена возрастает почти в 10 раз при нагреве до максимальной ра­бочей температуры. Основной трудностью в связи с применением этих металлов является их плохая обрабатываемость и свариваемость.

К неметаллическим нагревателям относят карборундовые стержня и трубки диаметром б—30 мм, известные под названием силит и глобар. Они отличаются друг от друга конструктивным исполнением и тех­нологией изготовления. Карборундовые нагреватели выдерживают тем­пературу до 1500 °С в окислительной среде.

Силитовые и глобаровые стержни в нагретом состоянии очень хруп­ки и малопрочны. Они чувствительны к быстрому нагреву, с изменени­ем температуры заметно уменьшают удельное сопротивление (практи­чески в два раза при нагреве до 1400°С). Эти нагреватели стареют в процессе работы, причем их сопротивление при этом увеличивается на 20—25%. Поэтому печи с карборундовыми нагревателями должны обязательно снабжаться ступенчатыми трансформаторами, позволяю­щими регулировать подводимое к ним напряжение. Срок службы кар­борундовых нагревателей составляет 1000—1200 ч при 1400°С и воз­растает в 2—3 раза при снижении рабочей температуры до 1300—1350 °С.

Неметаллическим материалом для нагревателей является также ди-силицид молибдена МоБіг, нагреватели из которого могут работать до 1680 °С в окислительной среде или атмосфере углекислого газа. При­менять эти нагреватели для работы в вакууме или атмосфере водорода не рекомендуется. Нагревательные элементы из дисилицида молибдена выпускают в виде стержней и U-образных элементов с диаметром ра­бочей части 6 мм. Удельное электрическое сопротивление этих нагрева­телей также сильно зависит от температуры и возрастает примерно в 12 раз при нагреве до 1600 °С. Поэтому питание печей с такими нагре­вателями осуществляют только через ступенчатые трансформаторы, до­пускающие регулирование вторичного напряжения в очень широких пределах.

Графит широко применяется для изготовления нагревательных эле­ментов, особенно для работы в вакууме или аргоне. Из графита выпол­няют нагреватели в форме стержней диаметром 5, 20 и 40 мм, пластин и трубок. Этот материал сравнительно дешев, хорошо обрабатывается и.надежно и долго служит при температуре до 2100°С в вакууме. Его удельное сопротивление сравнительно мало изменяется с температурой, возрастая на 10—12 % при нагреве до 2100°С.

Дата добавления: 2015-11-10 ; просмотров: 3569 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Нагревательное сопротивление-резистивное тело, наиболее ответственный элемент электрического нагревателя, от которого зависит надежность и долговечность его работы в заданном технологическом режиме. Поэтому к материалам для нагревательных элементов предьявляются особые требования, основанные на следующих: достаточные жаростойкость и жаропрочность ( не должны окислятся и терять механических свойств при высоких температурах); большое удельное электрическое сопротивление (должны обеспечивать возможность включения на сетевое напряжение при небольшой длинне нагревателя) и малый температурный коэффициент сопротивления ( должны незначительно изменять сопротивление при изменении температуры ); стабильность размеров и электрических свойств .

В зависимости от температурного режима и технологических условий нагреваемой cреды для изготовления электрических нагревателей используют металлические и неметаллические материалы. Для низко- и средне-температурных установок широко применяют специальные сплавы: хромоникелевые и железохромоникелевые. Наиболее распространены нихромы. В низкотемпературных установках ( до 620 К) электрические нагреватели выполняют из дешевого и доступного материала — углеродистой стали. Неметаллические нагреватели используют нагреваватели используют в высокотемпературных установок. В ЭТУ с рабочей температурой до 1570 К применяют стержневые цилиндрические нагреватели из карборунда, а с температурой до 1870 К — из дисилицида молибдена. В высокотемпературных вакуумных печах с температурой нагрева до 3270 К используют графитовые нагреватели в виде стержней, трубок, пластин и другой формы.

Электрические нагреватели из карборунда, дисилицида и графита обладают высоким сопротивлением и переменными температурным коэффициентом сопротивления. Питание на эти нагреватели подается от понижающего трансформаторов с регулируемым вторичным напряжением.

В качестве электроизоляционного наполнителя ТЭНов используется периклаз (плавленый оксид магния, который получают в дуговых электропечах, плавкой магнийсодержащих веществ). К данному наполнителю предъявляются следующие требования:

— низкая удельная электропроводимость;

— высокая электрическая прочность;

— достаточно высокий коэффициент теплопроводности;

В качестве оболочек ТЭНов используют тонкостенные металлические трубы ( латунные, алюминиевые, стальные)

Латунь — до 250 °C;

Алюминий — до 350 °C;

Углеродистая сталь — до 450 °C;

Нержавеющая сталь — до 750 °C;

Основным требованием предъявляемым к оболочке является механическая прочность, для защиты нагревательного элемента от механических повреждений.

Для повышения долговечности нагревателей применяют защитные покрытия (хромникелевые и др.). Такие покрития увеличивают ресурс нагревателей в несколько раз при работе в водных растворах.

Для герметизации ТЭНов прииеняют:

— кремнийорганические лаки и эмали;

Расчеты симметричных и неполнофазных режимов трехфазной ЭТУ (электрокалорифера)

Регулировать мощность электрической нагревательной установки мы будем, изменяя схему включения нагревателей.

Рассчитаем варианты регулирования для электрического калорифера.

Двойной треугольник

Рис. 3. Двойной треугольник.

а) При данной схеме включения каждый нагреватель находится под номинальным напряжением, а значит будет отдавать полную мощность. Так как двойной треугольник содержит шесть нагревательных элементов, то общая мощность равна:

Вт

б) При обрыве линейного провода в точке А (см. рис.3) под напряжением остаются все шесть нагревательных элементов, но четыре из них только под напряжением равным половине номинального. Следовательно, мощность, выделяемая на одном элементе, получается равная:

Вт

Полная мощность тогда получается:

Вт

где n1 — количество нагревателей находящихся не под номинальным напряжением, шт.;

P1 — мощность, отдаваемая нагревателем, находящимся не под номинальным напряжением, Вт.

в) При обрыве фазы в точках В (см. рис.3) мы получаем, что два нагревателя не включены вообще, а остальные находятся под номинальным напряжением. Следовательно, число нагревателей в работе будет четыре.

Вт

Звезда

а) При включении нагревателей по схеме звезда, каждый нагреватель находится под фазным напряжением. Следовательно, нагреватели включены на напряжение равное . Так как — то если напряжение уменьшить в раз, то, мощность, выделяемая на нагревательном элементе получается меньше в 3 раза. Следовательно, полная мощность, отдаваемая схемой, вычисляется по формуле:

Вт

б) При обрыве линейного или фазного провода в точке А (см. рис.4) в работе оказываются только два нагревателя и включены они на половину линейного напряжения, следовательно, мощность, выделяемая ими, вычисляется так:

Вт

Треугольник

а) При данной схеме включения каждый нагреватель находится под

номинальным напряжением, а значит будет отдавать полную мощность. Данная схема содержит три нагревательных элемента.

Вт

б) При обрыве линейного провода в точке А (см. рис.5) под напряжением остаются все три нагревательных элементов, но два из них только под напряжением равным половине номинального. Следовательно, мощность, выделяемая на одном элементе, получается равная:

Вт

Полная мощность тогда получается:

Вт

где n1 — количество нагревателей находящихся не под номинальным напряжением, шт.; P1 — мощность, отдаваемая нагревателем, находящимся не под номинальным напряжением, Вт.

в) При обрыве фазы в точке В (см. рис. 5) мы получаем, что один нагревателя не включен вообще, а остальные находятся под номинальным напряжением. Следовательно, число нагревателей в работе будет два.

Вт

Двойная звезда

Рис.6. Двойная звезда

а) При включении нагревателей по схеме звезда, каждый нагреватель находится под фазным напряжением. Следовательно, нагреватели включены на напряжение равное . Так как то если напряжение уменьшить в раз, то мощность выделяемая на нагревательном элементе получается меньше в 3 раза. Следовательно, полная мощность, отдаваемая схемой, вычисляется по формуле:

Вт

б) При обрыве линейного или фазного провода в точке А (см. рис.6) в работе оказываются только четыре нагревателя и включены они на половину линейного напряжения, следовательно, мощность, выделяемая ими, вычисляется так:

Вт

Читайте также:  Коробка простая своими руками
Оценить статью
Добавить комментарий