Максимальная энергия магнитного поля катушки индуктивности формула

Максимальная энергия магнитного поля катушки индуктивности формула

Содержание

§ 101. Энергия магнитного поля катушки

При размыкании цепи в опыте (см. рис. 150, в) лампочка ярко вспыхивала. Откуда же бралась энергия, за счет которой в данном случае горела лампочка? Так как это происходило, когда цепь была отключена от источника тока, т. е. при уменьшении индукции магнитного поля катушки, то, следовательно, энергия, потребляемая лампочкой, была раньше запасена в виде энергии магнитного поля. При размыкании цепи оно начинает исчезать и запасенная в нем энергия в процессе самоиндукции превращается в энергию электрического тока, за счет которой горит лампочка. Из рассмотренного делаем вывод: магнитное поле обладает энергией.

Запас энергии магнитного поля катушки равен энергии, израсходованной источником тока на преодоление э. д. с. самоиндукции за весь тот промежуток времени, пока сила тока при замыкании цепи возрастала от нуля до некоторого значения I (см. рис. 150, б). Часть работы э. д. с. источника в катушке идет на нагревание ее проводов, а часть, равная э. д. с. самоиндукции Еист = Ес, совершает работу против э. д. с. самоиндукции.

Работа тока, идущая на преодоление э. д. с. самоиндукции, равна энергии магнитного поля катушки:

Ток изменялся от 0 до I, следовательно, Поэтому Ток изменялся от 0 до I, тогда изменение тока ΔI = I. Значит,

Подставим Ес и Iср в формулу (3):

Получим формулу энергии магнитного поля катушки

Зависимость энергии магнитного поля катушки от ее индуктивности и силы тока в ней можно видеть на таком опыте. Увеличив реостатом силу тока в катушке, разомкнем цепь. В этом случае лампочка вспыхнула ярче, чем при малом токе в катушке. Значит, энергия магнитного поля катушки тем больше, чем больше сила тока в ней. Удалим из катушки половину сердечника, уменьшив тем самым ее индуктивность. Установим прежнюю силу тока в цепи и затем разомкнем ее. В этом случае лампочка вспыхивает менее ярко. Следовательно, энергия магнитного поля катушки тем больше, чем больше ее индуктивность. Энергия магнитного поля нами используется, например, в подъемном электромагнитном кране для притяжения кусков железа к сердечнику электромагнита крана, для получения тока во вторичной обмотке трансформатора.

Задача 36. В катушке без сердечника за 0,01 сек ток увеличился от 1 до 2 а, при этом в катушке возникла э. д. с. самоиндукции 20 в. Определить индуктивность катушки и изменение энергии ее магнитного поля.

Изменение энергии магнитного поля катушки Заменив получим

Если в контуре с индуктивностью L течёт ток I, то в момент размыкания цепи возникает индукционный ток и им совершается работа. Эта работа совершается за счёт энергии исчезнувшего при размыкании цепи магнитного поля. На основании закона сохранения и превращения энергию магнитного поля превращается главным образом в энергию электрического поля, за счёт которой происходит нагревание проводников. Работа может быть определена из соотношения

Так как , то

Уменьшение энергии магнитного поля равно работе тока, поэтому

(16.18)

Формула справедлива для любого контура и показывает, что энергия магнитного поля зависит от индуктивности контура и силы тока, протекающего по нему.

Рассчитаем энергию однородного магнитного поля длинного соленоида, индуктивность которого определяется по формуле L = μμ0n 2 V. B этом случае формула энергии примет вид

Учитывая, что напряжённость поля внутри бесконечно длинного соленоида Н=In, получаем

(16.19)

Выразим энергию через индукцию магнитного поля B= μμ0H:

(16.20)

(16.21)

Вследствие того, что магнитное поле соленоида однородно и локализовано внутри соленоида, энергия распределена по объёму соленоида с постоянной плотностью

(16.22)

Учитывая последние три формулы, получаем

Учитывая правило Ленца, можно заметить, что явление самоиндукции аналогично проявлению инертности тел в механике. Так, вследствие инертности тело не мгновенно приобретает определённую скорость, а постепенно. Так же постепенно происходит и его торможение. То же самое, как мы видели, происходит и с силой тока при самоиндукции. Эту аналогию можно провести и дальше.

и

эти уравнения эквивалентны.

Эквивалентны и формулы

Примеры решения задач

Пример. В магнитном поле, изменяющемся по закону B=B0cosωt (B0=5мТл,

ω=5с -1 ), помещён круговой проволочный виток радиусом r=30см, причём нормаль к витку образует с направлением поля угол α=30º. Определите ЭДС индукции, возникающую в витке в момент времени t=10с.

Дано: B=B0cosωt; B0=5мТл=5∙10 -3 Тл; ω=5с -1 ; r=30см=0,3 м; α=30º; t=10 с.

Решение: Согласно закону Фарадея,

, (1)

Где магнитный поток, сцепленный с витком при произвольном его расположении относительно магнитного поля.

По условию задачи B=B0cosωt, а площадь кольца S=πr 2 , поэтому

Подставив выражение (2) в формулу (1) и продифференцировав, получаем искомую ЭДС индукции в заданный момент времени:

Пример В соленоиде длиной ℓ=50см и диаметром d=6см сила тока равномерно увеличивается на 0,3А за одну секунду. Определите число витков соленоида, если сила индукционного тока в кольце радиусом 3,1 см из медной проволоки (ρ=17нОм∙м), надетом на катушку, Iк=0,3 А.

Дано: ℓ=50см=0,5 м; d=6см=0,06м; ;rк=3,1см=3.1∙10 -2 м; ρ=17нОм∙м=17∙10 -9 Ом∙м; Iк=0,3 А.

Решение. При изменении силы тока в соленоиде возникает ЭДС самоиндукции

(1)

где — индуктивность соленоида. Подставив это выражение в (1)

с учётом

.

ЭДС индукции, возникающая в одном кольце, в N раз меньше, чем найденное значение ЭДС самоиндукции в соленоиде, состоящем из N витков, т.е.

. (2)

Согласно закону Ома, сила индукционного тока в кольце

, (3)

где — сопротивление кольца. Поскольку ℓк=πd, а Sк=πrк 2 , выражение (3) примет вид

Подставив в эту формулу выражение (2), найдём искомое число витков соленоид

.

Пример В однородном магнитном поле подвижная сторона (её длина ℓ=20см) прямоугольной рамки (см. рисунок) перемещается перпендикулярно линиям магнитной индукции со скоростью υ=5 м/с. Определите индукцию В магнитного поля, если возникающая в рамке ЭДС индукции εi=0,2 В.

Решение. При движении в магнитном поле подвижной стороны рамки поток Ф вектора магнитной индукции сквозь рамку возрастает, что, согласно закону Фарадея,

, (1)

приводит к возникновению ЭДС индукции.

Поток вектора магнитной индукции, сцепленный с рамкой,

Подставив выражение (2) в формулу (1) и учитывая, что B и ℓ — величины постоянные, получаем

откуда искомая индукция магнитного поля

Пример В однородном магнитном поле с индукцией В=0,2 Тл равномерно вращается катушка, содержащая N=600 витков, с частотой n=6 с -1 . Площадь S поперечного сечения катушка 100см 2 . Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определите максимальную ЭДС индукции вращающейся катушки.

Дано: В=0,2 Тл; N=600; n=6 с -1 ; S=100см 2 =10 -2 м 2 .

Решение. Согласно закону Фарадея,

где Ф – полный магнитный поток, сцеплённый со всеми витками катушки. При произвольном расположении катушки относительно магнитного поля

где круговая частота ω=2πn. Подставив ω в (1), получим

Пример Однослойная длинная катушка содержит N=300 витков, плотно прилегающих друг к другу. Определите индуктивность катушки, если диаметр проволоки d=0,7 мм (изоляция ничтожной толщины) и она намотана на картонный цилиндр радиусом r=1 см. .

Дано: N=300; d=0,7 мм=7∙10 -4 м; r=1 см=10 -2 м.

Решение. Индуктивность катушки

(1)

где Ф – полный магнитный поток, сцепленный со всеми витками катушки; I — сила тока в катушке.

Учитывая, что полный магнитный поток

(N-число витков катушки; В – магнитная индукция; S – площадь поперечного сечения катушки); магнитная индукция в катушке без сердечника

0 – магнитная постоянная; ℓ- длина катушки), длина катушки

(d-диаметр проволоки; витки вплотную прилегают друг к другу), площадь поперечного сечения катушки

Получим осле подстановки записанных выражений в формулу (1) искомую индуктивность катушки:

Пример Первичная обмотка понижающего трансформатора с коэффициентом трансформации k=0,1 включена в сеть с источником переменного напряжения с ЭДС ε1=220 В. Пренебрегая потерями энергии в первичной обмотке, определите напряжение U2 на зажимах вторичной обмотки, если её сопротивление R2=5 Ом и сила тока в ней I2=2А.

Решение. В первичной обмотке под действием переменной ЭДС ε1 возникает переменный ток I1, создающий в сердечнике трансформатора переменногый магнитный поток Ф, который пронизывает вторичную обмотку. Согласно закону Ома, для первичной обмотки

где R1 – сопротивление первичной обмотки. Падение напряжения I1R1 при быстропеременных полях мало по сравнению с ε1 и ε2. Тогда можем записать:

(1)

ЭДС взаимной индукции, возникающая во вторичной обмотке,

(2)

Из выражений (1) и (2) получаем

,

где — коэффициент трансформации, а знак «-» показывает, что ЭДС в первичной и вторичной обмотках противоположны по фазе. Следовательно, ЭДС во вторичной обмотке

Напряжение на зажимах вторичной обмотки

Пример Соленоид без сердечника с однослойной обмоткой из проволоки диаметром d=0,4 мм имеет длину ℓ=0.5 м и поперечное сечение S=60см 2 . За какое время при напряжении U=10 В и силе тока I=1,5 А в обмотке выделится количество теплоты, равное энергии поля внутри соленоида? Поле считать однородным.

Дано: d=0,4 мм=0,4∙10 -4 м; ℓ=0,5 м; S=60см 2 =6∙10 -3 м 2 ; I=1,5А; U=10В; Q=W.

Решение. При прохождении тока I при напряжении U в обмотке за время t выделяется теплота

Энергия поля внутри соленоида

(2)

где (N – общее число витков соленоида). Если витки вплотную прилегают друг к другу, то ℓ=Nd, откуда . Подставив выражение для В иN в (2), получаем

. (3)

Согласно условию задачи, Q=W. Приравняв выражение (1) и (3),найдём искомое время:

Пример Катушка без сердечника длиной ℓ=50 см содержит N=200 витков. По катушке течёт ток I=1А. Определите объёмную плотность энергии магнитного поля внутри катушки..

Решение. Объёмная плотность энергии магнитного поля (энергия единицы объёма)

, (1)

где — энергия магнитного поля (L — индуктивность катушки); V=Sℓ- объём катушки (S — площадь катушки; ℓ- длина катушки).

Магнитная индукция поля внутри соленоида с сердечником с магнитной проницаемостью μ равна

.

Полный магнитный поток, сцепленный со всеми витками соленоида,

.

Учитывая, что Ф=LI, получаем формулу для индуктивности соленоида:

(2)

Подставив выражение (2) в формулу (1) с учётом того, что , найдём искомую объёмную плотность энергии магнитного поля внутри катушки:

Почему возникает магнитное поле

Магнитные свойства некоторых веществ, позволяющие притягивать металлические предметы, были известны с давних времен. Но к пониманию сути этого явления удалось приблизиться только в начале XIX века. По аналогии с электрическими зарядами, были попытки объяснить магнитные эффекты с помощью неких магнитных зарядов (диполей). В 1820 г. датский физик Ханс Эрстед обнаружил, что магнитная стрелка отклоняется при пропускании электрического тока через проводник, находящийся около нее.

Тогда же французский исследователь Андре Ампер установил, что два проводника, расположенные параллельно друг другу, вызывают взаимное притяжение при пропускании через них электрического тока в одном направлении и отталкивание, если токи направлены в разные стороны.

Рис. 1. Опыт Ампера с проводами с током. Стрелка компаса вблизи провода с током

На основании этих наблюдений Ампер пришел к выводу, что взаимодействие тока со стрелкой, притяжение (и отталкивание) проводов и постоянных магнитов между собой можно объяснить, если предположить, что магнитное поле создается движущимися электрическими зарядами. Дополнительно Ампер выдвинул смелую гипотезу, согласно которой внутри вещества существуют незатухающие молекулярные токи, которые и являются причиной возникновения постоянного магнитного поля. Тогда все магнитные явления можно объяснить взаимодействием движущихся электрических зарядов, и никаких особенных магнитных зарядов не существует.

Математическую модель (теорию), с помощью которой стало возможным рассчитывать величину магнитного поля и силу взаимодействия, разработал английский физик Джеймс Максвелл. Из уравнений Максвелла, объединивших электрические и магнитные явления, следовало, что:

  • Магнитное поле возникает только в результате движения электрических зарядов;
  • Постоянное магнитное поле существует у природных магнитных тел, но и в этом случае причиной возникновения поля является непрерывное движение молекулярных токов (вихрей) в массе вещества;
  • Магнитное поле можно создать еще с помощью переменного электрического поля, но это тема будет рассмотрена в следующих наших статьях.

Магнитное поле катушки с током

Металлический провод, намотанный кольцами на любой цилиндрический стержень (деревянный, пластмассовый и т.п.) — это и есть электромагнитная катушка. Провод должен быть изолированным, то есть покрыт каким-либо изолятором (лаком или пластиковой оплеткой) во избежание замыкания соседних витков. В результате протекания тока магнитные поля всех витков складываются и получается, что суммарное магнитное поле катушки с током идентично (полностью похоже) магнитному полю постоянного магнита.

Рис. 2. Магнитное поле катушки и постоянного магнита.

Внутри катушки магнитное поле будет однородное, как в постоянном магните. Снаружи магнитные линии поля катушки с током можно обнаружить с помощью мелких металлических опилок. Линии магнитного поля замкнуты. По аналогии с магнитной стрелкой компаса, катушка с током имеет два полюса — южный и северный. Силовые линии выходят из северного полюса и заканчиваются в южном.

Для катушек с током существуют дополнительные, отдельные названия, которые используют в зависимости от области применения:

  • Катушка индуктивности, или просто — индуктивность. Термин используется в радиотехнике;
  • Дроссель (drossel — регулятор, ограничитель). Используется в электротехнике;
  • Соленоид. Это составное слово происходит от двух греческих слов: solen — канал, труба и eidos — подобный). Так называют специальные катушки с сердечниками из специальных магнитных сплавов (ферромагнетиков), которые используют в качестве электромеханических механизмов. Например, в автомобильных стартерах втягивающее реле — это соленоид.

Рис. 3. Катушки индуктивности, дроссель, соленоид

Энергия магнитного поля

В катушке с током запасается энергия от источника электропитания (батареи, аккумулятора), которая тем больше, чем больше ток I и величина L, которая называется индуктивностью. Энергия магнитного поля катушки с током W вычисляется с помощью формулы:

Эта формула напоминает формулу для кинетической энергии тела. Индуктивность аналогична массе тела, а сила тока аналогична скорости тела. Магнитная энергия пропорциональна квадрату силы тока, как кинетическая энергия пропорциональна квадрату скорости.

Для расчета величины индуктивности катушки существует следующая формула:

N — число витков катушки;

S — площадь поперечного сечения катушки;

lк — длина катушки;

μ — магнитная проницаемость материала сердечника — справочная величина. Сердечник представляет собой металлический стержень, помещенный внутрь катушки. Он позволяет значительно увеличивать величину магнитного поля.

Что мы узнали?

Итак, мы узнали, что магнитное поле возникает только в результате движения электрических зарядов. Магнитное поле катушки с током похоже на магнитное поле постоянного магнита. Энергию магнитного поля катушки можно рассчитать, зная силу тока I и индуктивность L.

Читайте также:  Можно ли лазурь наносить на лак
Оценить статью
Добавить комментарий