Ламповый микрофон своими руками

Ламповый микрофон своими руками

Содержание

О ламповых микрофонах

На создание данной статьи меня натолкнул опыт ремонтов зарубежных моделей студийных ламповых микрофонов и анализ принципиальных электрических схем.

Долгий период холодной войны, и ещё пару десятилетий после, схемы микрофонов были таинственны и недоступны, порой узнать, а что же там, внутри того или иного звукового девайса, можно было лишь разобрав сам прибор и вырисовав схему по внутреннему монтажу, чем я и занимался. Плюс, со временем, в руках оказывались "мануалы" и тех моделей, чьи корпуса никогда не попадались в руки, и теперь я делюсь с Вами своими наработками и мыслями по этому поводу.

Начнём по порядку, с самого простого, знакомого и известного – лампового микрофона ЛОМО 19А19. В конце 60-х годов у разработчиков конденсаторных микрофонов появились, наконец, радиолампы минитриоды в стеклянном баллоне, которые уже перестали быть стратегическим сырьём, и обладали по тем временам очень компактными размерами, это были триоды с гибкими выводами, радиолампы 6С6Б. После 6Ж1П и 6Ж2П, применявшихся в микрофонах 19А9, и других ранних моделях ЛОМО, это был настоящий прорыв, и кто-то очень умный дал команду разработать компактный ламповый студийный микрофон. Вряд ли мы сможем взять теперь интервью у главного дизайнера микрофона, да возможно его и не было, ибо основой для формы корпуса, судя по всему, послужили динамические микрофоны, которые в то время были намного компактнее студийных конденсаторных, и потому внутреннее пространство корпуса 19А19 действительно оказалось весьма и весьма ограниченным. Но, что удивительно, русские умельцы, специализирующиеся, как известно, на подковке блох, сумели-таки поместить в этот корпус не только огромный капсюль, но и лампу, и выходной трансформатор, и всю схему усиления, — она то нас и интересует.

Читайте также:  Необычный декор стен своими руками

Схема лампового микрофона ЛОМО 19А19 (LOMO 19A 19)

Как, видите, максимально просто, как в учебниках, усилительный каскад на ламповом триоде, ничего лишнего, ни одной цепи обратной связи по усиливаемому сигналу. К слову сказать, усиления в этом каскаде почти нет, коэффициент передачи каскада по паспорту равен 1.1. На практике он может отличаться в большую сторону за счёт характеристик применяемых ламп и коэффициента трансформации выходного трансформатора (обычно в подобных схемах он от 4:1 до 12:1).

Ни Neumann, ни GefelL, ни Audiotechnica или AKG не применяли в микрофонах настолько элементарных схем, — им всегда хотелось что-то подправить, ввести какую-нибудь улучшающую звучание обратную связь, показать, насколько они образованы, в общем выпендриться. И только русский Ваня лукаво не мудрствовал, а рассчитал каскад по учебнику для ПТУ, и. разработал таким образом гениальную вещь. Но об этом далее.

Разницу в естественности звучания между 19А19 и другими дорогими ламповыми микрофонами впервые я заметил, когда мне в ремонт стали приносить такие модели как AKG C12, Audio-Technica AT 4060, и тд. Ремонты касались в основном систем питания и коммутации микрофонов, никаких дефектов, которые могли бы отразиться на звучании, ни в капсюле, ни в усилительной части не было. И вот что меня заинтересовало. У микрофонов был и плотный низ, и верхов тоже хватало, линейность АЧХ была налицо, но что-то было не так, была в них некоторая синтетичность. Особенно странно было это заметить в AKG C12 – одного из топовых ламповых микрофонов, сопровождающимся внушительным кейсом, имеющего приличный вес (в килограммах) и стоящего для России баснословных денег, особенно на момент моего с ним знакомства (2004г). AKG C12 был словно закрыт от внешнего мира, он был сам по себе, а звук сам по себе.
И я обратился к электрической схеме.

Читайте также:  Не выключается ноутбук через пуск что делать

Схема лампового микрофона AKG C12

Первое что меня удивило это обилие конденсаторов — врагов чистого звука. Правда, разобравшись подробнее, выяснилось, что почти все они относятся к фильтрующим цепочкам, но не стоит забывать, что со временем, при потере конденсаторами исходных параметров (а в современной элементной базе это, увы, не редкость), цепочки эти становятся частотнозависимы. Кроме того, во втором каскаде есть очевидная частотозависимая ООС R13 C11. Второе что меня удивило – это построение первого каскада усилителя: как и ЛОМО 19А19 он был собран по схеме анодного усилителя, а не катодного повторителя, который так пропагандируют некоторые электронщики, что окончательно избавило меня от комплексов за наш 19А19.
Не стоит также упускать из виду, что и в AKG C12 и в Audio-Technica AT 4060 стоят капсюли с центральным отводом, что накладывает свой отпечаток на характер звучания микрофона. Не могу Вам сказать, какой фактор в большей степени, скорее — их совокупность и определяет это несколько закрытое звучание данных моделей. Но точно могу сказать, что в AKG C12 (как и в других конденсаторных микрофонах) никогда не стоит пользоваться аттенюаторами (-6дБ, -10дБ и тд) и дополнительным усилением (+10дБ, как в AKG C12).
Аттенюаторы (загрубители чувствительности) подключают параллельно капсюлю дополнительную шунтирующую ёмкость (это тоже самое, если бы Вы в автомобиле для того, чтобы ехать на меньшей скорости, вместо того, чтобы переключить передачу, прицепили бы сзади дополнительную тележку — машина поедет медленнее, но какой ценой?). И кроме того, если пульт или компьютерная карта у Вас приличного качества с профессиональным микрофонным входом, не стоит пользоваться в AKG C12 дополнительным усилением +10дБ. Внутренности этого микрофона и так обвешаны достаточным количеством деталей и переключателей, по которым звуковой сигнал (в самом начале своего формирования в электрический сигнал) хаотично бегает во всевозможных направлениях, что не есть хорошо. Вспомните концепцию Hi End — всё предельно просто! Самый дорогой ламповый усилитель звука — это усилитель в классе А на одном триоде, без единой корректирующей цепи!

Однако в истории лампового микрофоностроения были и любопытные примеры относительно удачного применения ООС. Прежде всего это касается ЛОМО 19А9.

Схема лампового микрофона 19А9

Модель19А9 всегда стояла особняком прежде всего из-за своей неповторимой конструкции корпуса и непревзойдённого дизайна. Корпус 19А9 состоит из двух металлических полосочек и колечка, на которые крепятся разъём, лампа и капсюль, а далее на нижнюю часть микрофона надевается выдавленный из тонкого железа кожух, а на капсюль одеваются две крышки – спереди и сзади. И всё! Никакого литья (корпуса для 19А19 отливали из алюминия, и потом долго фрезеровали), из деталей внутри – лишь самая маленькая для 50-х годов ширпотребовская радиолампа 6Ж1П, два сопротивления и один конденсатор. Сигнал, анодное напряжение, напряжение накала, напряжение поляризации и общий провод – всё идёт через 4-х штырьковый разъём по 3 (!) проводам. Посчитали? Да, у меня тоже получается, что их должно быть около 7, ну минимум, 6, но их только 3, и всё это работает, и довольно неплохо!
Открываем справочник по радиолампам на странице 6Ж1П или 6Ж2П, читаем: высокочастотный пентод с короткой характеристикой, предназначен для широкополосного усиления напряжения высокой частоты, и приводятся схемы всяких преобразователей частоты для телевизоров. Какой напрашивается вывод? Правильно: не читайте перед обедом советских газет! Ну не было в те времена компактных низкочастотных триодов. Ни 6Н1П, ни 6Н2П, ни тем более радиолампы предыдущих поколений ни за что не поместились бы в корпус 19А9.
У пентодов, особенно у высокочастотных, большое усиление, в низкочастотных трактах они склонны к самовозбуждению, кроме того у пентодов высокое внутреннее сопротивление, они не могут работать корректно на низкоомную нагрузку, такую как звуковой трансформатор, а без него в ламповом микрофоне не обойтись.
Что делает в такой ситуации простой русский инженер?
Он говорит:
1. пентод включаем по триодной схеме, соединив вторую сетку с анодом, уменьшая таким образом коэффициент усиления, уровень шумов и гармоник, и внутреннее сопротивление лампы
2. переходная ёмкость между капсюлем и управляющей сеткой усилительной лампы нам не нужна — мы изолируем капсюль от корпуса (массы) и соединим его с положительным напряжением — таким образом будет осуществлена поляризация мембраны капсюля, заодно мы уменьшим схему на одно сопротивление, так как резистор смещения входной сетки в данном случае будет выполнять и функцию резистора, через которое подаётся поляризующее напряжение
3. звуковой трансформатор "вынесем за ворота" и разместим в блоке питания микрофона, а заодно, (чего уж мелочиться) вынесем из микрофона и анодное сопротивление с разделительным конденсатором – всё равно их место рядом с трансформатором
4. поскольку анодное сопротивление из микрофона мы удалили, поляризацию мембраны будем осуществлять прямо от анода лампы, — не тащить же из за этого ещё один провод по кабелю! Создаётся ООС (отрицательная обратная связь) между сеткой и анодом усилительной лампы. ну и прекрасно! – говорит русский инженер – всё равно у нас есть запас по усилению, ведь это же пентод, а с прямой частотонезависимой ООС звучать будет даже лучше
5. один из выводов накала лампы, как водится, соединяем с общим минусом (массой), и у нас остаются те самые три провода: накал, анодное напряжение (оно же поляризующее, оно же сигнал) и общий (он же экран).
Вот и вся наука.

Единственное замечание, которое хотелось бы сделать к этой схеме – это прохождение звукового сигнала по кабелю. Поскольку сигнал передаётся небалансным способом, он, казалось бы должен быть очень чувствительным к внешним электромагнитным помехам, тем более что уровень его не велик. Но в том-то и фишка, что, поскольку он снимается с анода, он имеет постоянный потенциал порядка 50. 60В, и большая часть внешних электромагнитных помех просто-напросто не может преодолеть электромагнитное поле самого провода. НО! Качество передаваемого по кабелю звукового электрического сигнала от микрофона к блоку питания сильно зависит от качества и длины этого провода. Чем он короче и чем толще изоляция между проводами внутри провода (чем меньшую ёмкость он имеет), тем будет лучше. В длинном тонком или старом проводе ВЧ составляющие будут затухать, и Вы можете так и не услышать всех прелестей модели ЛОМО 19А9.

Так уж получается, что в рамках этой статьи мы рассматриваем схемы микрофонов, не привязываясь линейно ко времени их появления, и движемся скорее назад, всё глубже, к корням производства микрофонов. А что же было до этого?
А до этого был, например, студийный микрофон Neumann U 47, не менее интересный по своим схемотехническим решениям.

Схема лампового микрофона Neumann U47

В 40-х годах Георг Нойманн присмотрел лампу VF 14, выпускавшуюся Telefunken для радиоэлектронной промышленности. Главная её особенность была в том, что накал у лампы VF14 не сильноточный, и его можно запитать от высокого анодного напряжения, что Георг Нойманн и сделал. Это был пентод, который, конечно же включили по триодной схеме, благодаря чему микрофон U47 коммутировался всего лишь четырёхжильным проводом. Глубокая ООС по постоянному и переменному току на резисторе R3 придаёт усилителю линейность, стабильность и минимизирует искажения усиления. В остальном схема близка к ЛОМО 19А19, если не считать, что Neumann U 47 – двухмембранный микрофон и может менять характеристику направленности между кругом и кардиоидой. Кроме того, в Neumann U 47 предусмотрено переключение выходного сопротивления, что, видимо, было актуально для аппаратуры 40-вых годов.

Ну и напоследок приведу Вам схему микрофона Gefell RFT , судя по всему, это CM 7151.

Схема лампового микрофона Gefell RFT

Схема почти классическая. Разделительный конденсатор в выходном контуре лампы и звукового трансформатора соединён не с общим минусом, а с общим плюсом (любят они это дело), плюс введена ООС по постоянному току в цепь смещения сетки.

Подведу итоги нашего обозрения.
В схемах студийных ламповых микрофонах трудно придумать что-либо новое, каждая из них по-своему хороша, и отвечает заданным характеристикам. Внимательным нужно быть к компонентам, из которых состоит электрическая схема микрофона, особенно к конденсаторам в старых моделях и ко всем без исключения деталям в новых моделях.
Большое количество радиодеталей и переключателей не всегда является плюсом для студийных микрофонов. Моё мнение, если Вы гонитесь за естественностью, стремитесь к простоте. На практике часто получается, что вроде бы, да, старый ламповый микрофон не блещет линейностью АЧХ, но зато и не искажает звук, и не приукрашивает его. Ламповые микрофоны (в особенности отечественные) оставляют главное – живизну материала, а дальше – делайте, что хотите. Хотите – добавляйте частоты, которых Вам не хватает, хотите – вырезайте лишнее, но делайте это уже ПОСЛЕ записи.
Основное в микрофоне – это всё-таки капсюль, в основном за него мы платим эти бешенные деньги, и то, насколько грамотно спроектировано акустическое окружение капсюля – это и есть ноу-хау всем известных брендов.

Добрый день, уважаемые любители электроники. Сегодня хочу выложить на сайт микрофонный ламповый предусилитель на лампах 6Ж32П.

Основной причиной сборки явилось наличие двух микрофонных трансформаторов со старого микшерного пульта Tesla. Это подкупало сделать усилитель с хорошим балансным входом.

Хотя, в последствии оказалось, что это не входной трансформатор, а выходной (понижающий). Потребовалась переделка. Вход трансформатора стал выходом, а параллельные обмотки, идущие к моему микрофону, соединил последовательно. Работа удалась. Хочу так же отметить, что трансы сделаны на очень хорошем пермалое. Качественно. Спасибо Чехословакии и фирме Tesla.

В итоге, входное сопротивление трансформатора (по мультиметру) стало порядка 64 ом, а выходное, идущее на первую сетку лампы, осталось 1370 Ом. Вот трансформаторы после переделки:

Далее в Спринте была нарисована плата. Правда, был небольшой брак в текстолите (при травлении отслоилась медь в одном месте). Но, не беда.

Далее пошел процесс сборки усилителя. Вот несколько фотографий:

Пришло время блока питания. Решил питать схему от 9 вольт АС. Анодное – от DC-DC преобразователя, накал от 6 вольт постоянного напряжения. На плате усилителя уже разведен блок питания кроме преобразователя анодного напряжения. DC-DC преобразователь собирал по следующей схеме:

Схема проверена неоднократно. При отсутствии ошибок работает сразу. Транзистор Q2 можно ставить ВС547. Прекрасно работают и наши КТ3102.

Напряжение регулируется от 170 до 295 вольт. Дабы избежать фона вообще, на выходе я еще поставил конденсатор 330мкф на 400в. А уже после него питание шло через включатель анодного напряжения (электронный дроссель решил не ставить) на фильтры питания самого усилителя.

Далее собрал блок фантомного питания. Себе собирал на макетной плате, но в архиве к статье несколько вариантов леек. Блок питания (накал+анодное). Отдельно плата фантома на микросхеме 4049. И БП в трех лицах на одной плате (накал, преобразователь анодного и преобразователь фантомного питания). На платах все подписано!!

На выходе получилось 35 вольт, что по норме

фирмы AKG (фантомное постоянное напряжение от 9 до 52 вольт) вполне соответствует необходимому уровню. Только должны отличаются номиналы резисторов, идущие на горячий и холодный вход микрофона. При 35 в. номиналы стандартные – 6.8кОм. При питании 15 вольт на входе — на выходе получите обещанные 48в. Если это принципиально.

Микросхема СD4069, CD4049, все диоды 1N4148 (если завалялись наши КД522, КД521, КД510, КД503 – ставьте, все работает), конденсаторы ставил 33мкф, 47мкф с рабочим напряжением 50В. На 1 мкф не пробовал. На выходе фильтр (резистор 100 Ом, конденсатор 47мкф/50В) и два резистора 6.8кОм на выводы 2 и 3 разъема XLR.

Теперь схема! Изображено все, как у меня в конструкции, за исключением светодиода включения фантомного питания и включателя с подсветкой на анодное питание. Блоки DC-DC изображены условно. Подключение, как на схеме. Сами блоки в Спринте в архиве в трех вариантах. Еще раз говорю, там подписано и разведено все! На выбор.

Для получения нужного минусового смещения между 1-й сеткой и катодом увеличивал катодный резистор до 4.3 кОм. (у каждого может быть по разному). Питание анода от БП 295в. Высоковольтные резисторы не менял. Ставил только 0.25 Вт. Нагрев отсутствует. Ток анода в пределах нормы. Анодный конденсатор стоит 0.1мкф. Не было 0.22. Анодный и катодный конденсаторы желательно ставить хорошие. Сэмплы записывал на тех, что стоят в плате (Джемикон и желтые SX). Сейчас заказал Рубиконы в катоды и жду ФТ-3 в качестве межкаскадных. Правда, 0.22 в плату не войдет. Только 0.1мкф. А если обобщить, то на звук влияет все.

Сэмплы старые. Когда поставлю новые конденсаторы в катод и анод — запишу новые. Кроме того, по совету коллеги, параллельно вторичной обмотки трансформатора поставил резистор 22к. (на плате его нет. Надо припаять со стороны печати). И резистор 22к, идущий на первую сетку лампы,(на плате — *) уменьшил до 1к.

В конце, после тестов, во Фронтдизайнере нарисовал фронт и тыл. Распечатывал на фотобумаге, приклеил на панели, покрыл лаком. Потом монтировал XLR — ы и переменные резисторы. Пока более серьезные технологии не пробовал. Вот фото готового устройства:

т

Анодное напряжение включаю после 30с. – 1мин. выдержки.

Как я уже писал, электронный дроссель не ставил. Хотя, собранная плата задержки анодного была, но не вписалась в корпус по размерам.

На этом все. Всем работающих схем. С уважением, Эдуард Волков.

Добрый день, уважаемые любители электроники. Сегодня хочу выложить на сайт микрофонный ламповый предусилитель на лампах 6Ж32П.

Основной причиной сборки явилось наличие двух микрофонных трансформаторов со старого микшерного пульта Tesla. Это подкупало сделать усилитель с хорошим балансным входом.

Хотя, в последствии оказалось, что это не входной трансформатор, а выходной (понижающий). Потребовалась переделка. Вход трансформатора стал выходом, а параллельные обмотки, идущие к моему микрофону, соединил последовательно. Работа удалась. Хочу так же отметить, что трансы сделаны на очень хорошем пермалое. Качественно. Спасибо Чехословакии и фирме Tesla.

В итоге, входное сопротивление трансформатора (по мультиметру) стало порядка 64 ом, а выходное, идущее на первую сетку лампы, осталось 1370 Ом. Вот трансформаторы после переделки:

Далее в Спринте была нарисована плата. Правда, был небольшой брак в текстолите (при травлении отслоилась медь в одном месте). Но, не беда.

Далее пошел процесс сборки усилителя. Вот несколько фотографий:

Пришло время блока питания. Решил питать схему от 9 вольт АС. Анодное – от DC-DC преобразователя, накал от 6 вольт постоянного напряжения. На плате усилителя уже разведен блок питания кроме преобразователя анодного напряжения. DC-DC преобразователь собирал по следующей схеме:

Схема проверена неоднократно. При отсутствии ошибок работает сразу. Транзистор Q2 можно ставить ВС547. Прекрасно работают и наши КТ3102.

Напряжение регулируется от 170 до 295 вольт. Дабы избежать фона вообще, на выходе я еще поставил конденсатор 330мкф на 400в. А уже после него питание шло через включатель анодного напряжения (электронный дроссель решил не ставить) на фильтры питания самого усилителя.

Далее собрал блок фантомного питания. Себе собирал на макетной плате, но в архиве к статье несколько вариантов леек. Блок питания (накал+анодное). Отдельно плата фантома на микросхеме 4049. И БП в трех лицах на одной плате (накал, преобразователь анодного и преобразователь фантомного питания). На платах все подписано!!

На выходе получилось 35 вольт, что по норме

фирмы AKG (фантомное постоянное напряжение от 9 до 52 вольт) вполне соответствует необходимому уровню. Только должны отличаются номиналы резисторов, идущие на горячий и холодный вход микрофона. При 35 в. номиналы стандартные – 6.8кОм. При питании 15 вольт на входе — на выходе получите обещанные 48в. Если это принципиально.

Микросхема СD4069, CD4049, все диоды 1N4148 (если завалялись наши КД522, КД521, КД510, КД503 – ставьте, все работает), конденсаторы ставил 33мкф, 47мкф с рабочим напряжением 50В. На 1 мкф не пробовал. На выходе фильтр (резистор 100 Ом, конденсатор 47мкф/50В) и два резистора 6.8кОм на выводы 2 и 3 разъема XLR.

Теперь схема! Изображено все, как у меня в конструкции, за исключением светодиода включения фантомного питания и включателя с подсветкой на анодное питание. Блоки DC-DC изображены условно. Подключение, как на схеме. Сами блоки в Спринте в архиве в трех вариантах. Еще раз говорю, там подписано и разведено все! На выбор.

Для получения нужного минусового смещения между 1-й сеткой и катодом увеличивал катодный резистор до 4.3 кОм. (у каждого может быть по разному). Питание анода от БП 295в. Высоковольтные резисторы не менял. Ставил только 0.25 Вт. Нагрев отсутствует. Ток анода в пределах нормы. Анодный конденсатор стоит 0.1мкф. Не было 0.22. Анодный и катодный конденсаторы желательно ставить хорошие. Сэмплы записывал на тех, что стоят в плате (Джемикон и желтые SX). Сейчас заказал Рубиконы в катоды и жду ФТ-3 в качестве межкаскадных. Правда, 0.22 в плату не войдет. Только 0.1мкф. А если обобщить, то на звук влияет все.

Сэмплы старые. Когда поставлю новые конденсаторы в катод и анод — запишу новые. Кроме того, по совету коллеги, параллельно вторичной обмотки трансформатора поставил резистор 22к. (на плате его нет. Надо припаять со стороны печати). И резистор 22к, идущий на первую сетку лампы,(на плате — *) уменьшил до 1к.

В конце, после тестов, во Фронтдизайнере нарисовал фронт и тыл. Распечатывал на фотобумаге, приклеил на панели, покрыл лаком. Потом монтировал XLR — ы и переменные резисторы. Пока более серьезные технологии не пробовал. Вот фото готового устройства:

т

Анодное напряжение включаю после 30с. – 1мин. выдержки.

Как я уже писал, электронный дроссель не ставил. Хотя, собранная плата задержки анодного была, но не вписалась в корпус по размерам.

На этом все. Всем работающих схем. С уважением, Эдуард Волков.

Оценить статью
Добавить комментарий