Кратность максимального момента асинхронного двигателя

Кратность максимального момента асинхронного двигателя

5.1. Исследование короткозамкнутого асинхронного двигателя

1. Асинхронный электродвигатель является основным видом электродвигателей, выпускаемых электротехнической промышленностью. Своей простотой, надежностью, относительной дешевизной он завоевал преимущественное распространение по сравнению с другими видами электроприводов и находит применение во всех отраслях народного хозяйства.

2. Асинхронный двигатель состоит из двух основных частей: неподвижного статора и вращающегося ротора. Роторы бывают двух видов короткозамкнутые и с фазной обмоткой. Так как приблизительно 95% двигателей выпускаются короткозамкнутыми, то рассмотрим их подробнее. Коротко замкнутый ротор представляет собой цилиндр, набранный из листов электротехнической стали. На наружной поверхности ротора выштампованы пазы, которые заливаются расплавленным алюминием, в результате чего образуются продольные проводящие стержни. С обеих сторон (торцов) ротора располагаются алюминиевые кольца, которые замыкают эти стержни.

Статор асинхронного двигателя также представляет собой цилиндр, набранный из листов электротехнической стали. На внутренней поверхности цилиндра выштампованы пазы, в которых размещаются обмотки из изолированного медного провода. Оси обмоток смещены в пространстве на угол 120°друг относительно друга. Начала обмоток маркируются буквамиС1, С2, С3, концы обозначеныС4, С5., С6, (рисунок 5.1а).

3. При подключении обмоток статора к трехфазной электрической сети в ней возникают токи, действующие значения которых равны, а начальные фазы сдвинуты друг относительно друга на угол 120°, так как обмотки представляют для сети симметричную трехфазную нагрузку.

Можно строго доказать, что если три обмотки, оси которых сдвинуты друг относительно друга в пространстве, запитать системой токов, сдвинутых .друг относительно друга по фазе, то образующееся при этом магнитное поле будет вращающимся. Рассмотрим упрощенно процесс образования вращающегося поля, Пусть три обмотки на рисунке 5.1а запитаны системой токов, изображенной на рисунке 5.16, причем ток i2протекает по обмоткеС3С6, токi3— по обмоткеС3С6. За положительное направление токов примем направление от конца к началу обмоток. Изобразим условно проводники обмоток, лежащие в пазах статора, так, как это сделано на рисунке 5.1а, б, в, расставим направления токов в разные моменты времени и определим направление магнитного поля.

Читайте также:  Негорючая краска для пола

Рис. 5.1 Статор асинхронного двигателя и токи, питающие его обмотки

Направление векторов магнитной индукции определяется правилом правоходового винта: при движении правоходового винта в направлении тока магнитная силовая линия, охватывающая этот ток, направлена в сторону вращения головки винта.

Рис. 5.2 Образование вращающегося магнитного поля

В момент времени Т=90 o токiположителен, а токиi2,i3отрицательны (рисунок 5.16). Для этого момента времени расставляем на рисунке 5.1а направления токов в проводниках: положительно направленный ток течет от концаС4к началуС1(направление «от нас» обозначено крестиком, направление «к нам» — точкой); отрицательно направленные токи текут от начала фазы к концу, т.е. в концах фазC5иС6ток течет «к нам», а в началахС2иС3— соответственно «от нас». Образованные этими токами магнитные поля показаны в виде магнитных силовых линий. Суммарный вектор магнитной индукцииВнаправлен вертикально вверх.

Для момента времени t=210°устанавливаем по рисунку 5.1б, чтоi2 > 0,i1 0. Построение картины магнитного поля (рисунок 5.2в) дает возможность установить, что вектор магнитной индукции В повернулся в пространстве на угол240°.

Продолжая аналогичные рассуждения, можно установить, что за время, равное одному периоду изменения тока, вектор магнитной индукции повернется в пространстве на 360°, т.е. полученное магнитное поле будет вращающимся. Можно показать, что скорость вращения магнитного поля определяется выражением:

где f— частота тона трехфазной сети,Гц,

Р— число пар полюсов двигателя.

Метод получения вращающегося магнитного поля был впервые разработан замечательным русским инженером М.О. Доливо-Добровольским.

4. Поместим внутрь расточки статора ротор. Вращающиеся магнитные силовые линии пересекают стержни роторной обмотки. По закону электромагнитной индукции в стержнях возникнут э.д.с., а так как стержни с торцов замкнуты кольцами, то под влиянием э.д.с. в них потекут токи. Известно, что на ток в магнитном поле действует механическая сила. Можно сказать, что эта сила направлена в сторону вращения поля. Под влиянием сил, действующих на стержни с током, ротор начинает вращаться.

По мере увеличения числа оборотов ротора пуменьшается скорость пересечения магнитными силовыми линиями стержней роторной обмотки. При этом уменьшаются роторные э.д.с. и токи. Прип=п0пересечение прекратится, ток ротора станет равным нулю, исчезнет и вращающий момент.

Под влиянием сил трения ротор начнет уменьшать обороты, снова появится пересечение магнитными силовыми линиями стержней ротора и т.д. Ясно, что вращение ротора возможно лишь со скоростью, несколько меньшей, чем скорость вращения магнитного поля, т.е. всегда соблюдается условие п -1 .

Номинальное скольжение ротора:

где ном=nном/30 = 3,141440/30 = 150,72c -1

Номинальный момент нагрузки на валу двигателя: Мном= 9550Рном/пном= 95503,2/1440 = 2 1 ,2H м.

Пусковой момент двигателя: Мпуск=1,1Мном=1,121,2 = 23,4Н м.

Максимальное скольжение ротора асинхронного двигателя может быть определено из упрощенного уравнения механической характеристики при пуске:

Момент на валу при номинальной нагрузке:

откуда

Максимальный момент, развиваемый асинхронным двигателем:

Кратность максимального момента асинхронного двигателя по отношению к номинальному его значению; Мmax/Мном= 58/21,2 = 2.72.

Координаты естественной механической характеристики асинхронного двигателя для различных значений скольжения ротора рассчитывается по формулам:

и n=n1(1 –s).

Результаты расчетов сведены в табл. 1.

Величины, соответствующие работе асинхронного электродвигателя в режимах

Читайте также:

  1. I. Организационный момент
  2. S: С момента государственной регистрации заключения брака у супругов
  3. S: С момента государственной регистрации заключения брака у супругов
  4. А367.Максимальный срок действия доверенности в соответствии со ст. 186 ГК РФ составляет
  5. Административная правоспособность предприятий и организаций, общественных и религиозных объединений как юридических лиц возникает с момента
  6. Аэродинамические силы и продольный момент изолированного крыла
  7. Барометрическая формула
  8. Барометрическая формула. Распределение молекул в поле силы тяжести. Распределение Больцмана.
  9. Билет №16 Момент инерции
  10. В течение какого времени с момента применения огнестрельного оружия сотрудник обязан доложить рапортом?
  11. В. Изучение зависимости момента инерции от расстояния масс от оси вращения.
  12. Взлетом называется ускоренное движение самолета от момента начала разбега до набора высоты 25 м.

Трехфазный асинхронный двигатель с короткозамкнутым ротором, устройство и принцип действия.

Потери напряжения и мощности в трехфазной линии.

Ток нейтрального провода в трехфазной цепи является суммой фазных токов. При симметричной нагрузке сумма фазных токов равняется нулю. Таким образом, при симметричной нагрузке отсутствуют потери в нейтральном проводе. Потери напряжения и мощности в линии при трехфазном подключении в шесть раз меньше, чем при однофазном подключении потребителей такой же мощности.

При несимметричной нагрузке нейтральный провод необходим, по нему должен проходить выравнивающий ток. При несимметрии фазных токов появляется ток в нейтральном проводе. Если попытаться включить несимметричную нагрузку без нейтрального провода, получится перекос фаз, при котором на нагруженных фазах напряжение понизится, а на разгруженных появляется перенапряжение. Снижение напряжения нарушает работу потребителей, а перенапряжение может вывести из строя.

Потери энергии в нейтральном проводе снижают коэффициент полезного действия линии и ухудшается качество электроснабжения. Поэтому с целью получения симметричной нагрузки однофазные потребители стараются равномерно распределять по фазам.

Асинхронный электродвигатель с короткозамкнутым ротором является самым распространенным из электрических двигателей, применяемых в промышленности. Рассмотрим его устройство. На неподвижной части двигателя – статоре – размещается трехфазная обмотка, питаемая трехфазным током. Начала трех фаз этой обмотки выводятся на общий щиток, укрепленный снаружи на корпусе электродвигателя.

Собранный сердечник статора укрепляют в чугунном корпусе двигателя. Вращающуюся часть двигателя – ротор – собирают также из отдельных листов стали. В пазы ротора закладывают медные стержни, которые с двух сторон припаивают к медным кольцам.

Таким образом, все стержни оказываются замкнутыми с двух сторон накоротко. Если представить себе отдельно обмотку такого ротора, то она по внешнему виду будет напоминать «беличье колесо». В настоящее время у всех двигателей мощностью до 100 кВт «беличье колесо» делается из алюминия путем заливки его под давлением в пазы ротора. Вал вращается в подшипниках, закрепленных в подшипниковых щитах. Щиты при помощи болтов крепятся к корпусу двигателя. На один конец вала ротора насаживается шкив для передачи вращения рабочим машинам или станкам.

Рассмотрим характеристику, соответствующую режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как Mпуск. Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением Sкр, а наибольшее значение момента – критическим моментом Mкр. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Критический момент не зависит от активного сопротивления ротора, но зависит от подведенного напряжения. При уменьшении U1 снижается перегрузочная способность асинхронного двигателя.

Для построения механической характеристики задаются значениями коэффициента скольжения s и определяют по нему соответствующее значение частоты вращения ротора n, а также момент М по формуле Клосса

.

Если в эту формулу подставить вместо M и S номинальные значения момента и скольжения (Mн и Sн), то можно получить соотношение для расчета критического скольжения.

.

Участок характеристики, на котором скольжение изменяется от 0 до Sкр, соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (Mн, Sн). В пределах изменения скольжения от 0 до Sкр изменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется от Sкр до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

Пусковой момент — это значение момента в момент трогания ротора.

Где kм кратность пускового момента.

Номинальный момент — значение момента, создаваемое электромагнитным полем на валу двигателя при номинальных параметрах двигателя и номинальных внешних условиях.

Под критическим моментом понимают наивысшее или максимально возможное значение. В случае если момент нагрузки превысит величину критического момента, то двигатель остановится.

Дата добавления: 2015-05-07 ; Просмотров: 16850 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Вращающий момент, развиваемый на валу асинхронного электродвигателя в условиях нулевой скорости вращения ротора (когда ротор еще неподвижен) и установившегося в обмотках статора тока, — называется пусковым моментом асинхронного двигателя.

Пусковой момент иногда называют еще моментом трогания или начальным моментом. При этом подразумевается, что напряжение и частота питающего напряжения приближены к номиналу, причем соединение обмоток выполнено правильно. В номинальном режиме работы данный двигатель будет работать именно так, как предполагали разработчики.

Численное значение пускового момента

Пусковой момент вычисляется по приведенной формуле. В паспорте электродвигателя (паспорт предоставляется производителем) указана кратность пускового момента.

Обычно значение величины кратности лежит в пределах от 1,5 до 6, в зависимости от типа двигателя. И при выборе электродвигателя для своих нужд, важно убедиться, что пусковой момент окажется больше статического момента планируемой проектной нагрузки на валу. Если это условие не соблюсти, то двигатель попросту не сможет развить рабочий момент при вашей нагрузке, то есть не сможет нормально стартонуть и разогнаться до номинальных оборотов.

Давайте рассмотрим еще одну формулу для нахождения пускового момента. Она будет вам полезной для теоретических расчетов. Здесь достаточно знать мощность на валу в киловаттах и номинальные обороты, — все эти данные указаны на табличке (на шильдике). P2-номинальная мощность, F1-номинальные обороты. Итак, вот эта формула:

Для нахождения P2 применяют следующую формулу. Здесь необходимо учесть скольжение, пусковой ток и напряжение питания, все эти данные указаны на шильдике. Как видите, все довольно просто. Из формулы очевидно, что пусковой момент в принципе можно повысить двумя путями: увеличением стартового тока или повышением питающего напряжения.

Попробуем, однако, пойти наиболее простым путем, и рассчитаем значения пусковых моментов для трех двигателей серии АИР. Воспользуемся параметрами кратности пускового момента и величинами номинального момента, то есть пользоваться будем самой первой формулой. Результаты расчетов приведены в таблице:

Тип двигателя Номинальный момент, Нм Отношение пускового момента к номинальному моменту Пусковой момент, Нм
АИРМ132М2 36 2,5 90
АИР180 S2 72 2 144
АИР180М2 97 2,4 232,8

Роль пускового момента асинхронного электродвигателя (пусковой ток)

Часто двигатели включают напрямую в сеть, осуществляя коммутацию магнитным пускателем: на обмотки подается линейное напряжение, создается вращающееся магнитное поле статора, оборудование начинает работать.

Бросок тока в момент старта в данном случае неизбежен, и он превышает номинальный ток в 5-7 раз, причем длительность превышения зависит от мощности двигателя и от мощности нагрузки: более мощные двигатели стартуют дольше, их обмотки статора дольше принимают токовую перегрузку.

Маломощные двигатели (до 3 кВт) легко переносят данные броски, и сеть так же легко выдерживает эти незначительные кратковременные всплески мощности, ибо у сети всегда есть некоторый мощностный резерв. Вот почему небольшие насосы и вентиляторы, станки и бытовые электроприборы обычно включают напрямую, не заботясь особо о токовых перегрузках. Как правило обмотки статоров двигателей оборудования такого рода соединяются по схеме «звезда» из расчета на трехфазное напряжение 380 вольт или «треугольник» — для 220 вольт.

Если же вы имеете дело с мощным двигателем на 10 и более кВт, то включать напрямую такой двигатель в сеть нельзя. Бросок тока в момент пуска необходимо ограничить, иначе сеть испытает значительную перегрузку, что может привести к опасной «нештатной просадке напряжения».

Пути ограничения пускового тока

Наиболее простой способ ограничения пускового тока — пуск при пониженном напряжении. Обмотки просто переключаются с треугольника на звезду в момент пуска, а затем, когда двигатель набрал какие-то обороты — обратно на треугольник. Переключение осуществляется через несколько секунд после старта с помощью реле времени, например.

В таком решении пусковой момент также понижается, причем зависимость квадратичная: при снижении напряжения в будет в 1,72 раза, момент снизится в 3 раза. По этой причине пуск при пониженном напряжении подходит для такого оборудования, где пуск возможен с минимальной нагрузкой на валу асинхронного двигателя (например пуск многопильного станка).

Мощным нагрузкам, например ленточному конвейеру, необходим другой способ ограничения пускового тока. Здесь лучше подойдет реостатный метод, позволяющий снизить пусковой ток без уменьшения крутящего момента.

Такой способ очень подходит асинхронным двигателям с фазным ротором, где реостат удобно включается в цепь обмотки ротора, и регулировка рабочего тока осуществляется ступенчато, получается очень плавный пуск. С помощью реостата тут же можно регулировать и рабочую скорость двигателя (не только в момент запуска).

Но наиболее эффективным способом безопасного пуска асинхронных двигателей является все же пуск посредством частотного преобразователя. Величину напряжения и частоту регулирует сам преобразователь автоматически, создавая оптимальные условия двигателю. Обороты получаются стабильными, при этом броски тока принципиально исключены.

Оценить статью
Добавить комментарий