Контроллер для инкубатора схема

Контроллер для инкубатора схема

Содержание

Самодельный инкубатор: 3D печать

Самодельный инкубатор: результаты

В прошлой части мы разобрались с печатью элементов инкубатора на 3D принтере, теперь посмотрим на аппаратную и программную составляющие.

Аппаратная часть

В проекте использовались такие комплектующие:

Arduino UNO – ну тут все понятно, мозги системы.

LCD 1602 I2C – экран системы, брал сразу с модулем I2C, чтобы занимал меньше пинов на ардуине.

ИК приемник с пультом – не люблю возиться с кнопками, а тут вполне себе рабочее решение для управления системой. На Ali искать по запросу «IR Arduino».

DS18B20 – температурный датчик в герметичном корпусе с хорошей точностью измерений.

DHT11 – датчик температуры и влажности, точность никакая, поэтому с него берем только показания влажности, учитывая погрешность ±10%.

Модуль с 4 реле – для управления светом и вентиляторами. На Ali искать по запросу «Relay shield».

Сервопривод SG90 – для вращения лотков, я взял на всякий случай два, но пока стоит только один. Лоток с 8 яйцами крутит без проблем.

Блок питания на 12В — вполне достаточно 2 ампер. Обычно такие используются для светодиодной подсветки. На Ali можно искать по запросу «12v 2a».

LM2596 — DC–DC преобразователь: 12 вольт для питания Ардуины многовато, могут быть сбои в работе. Чтобы не покупать второй блок питания, с помощью этого модуля понижаем напряжение с 12В до 9В и подаем на ардуину.

Вентиляторы использовал стандартные, компьютерные, размером 60 мм. Не покупал, снял 2 шт. со старого системного блока. На Ali искать по запросу «60mm fan», но имеет смысл дойти до ближайшего компьютерного магазина, там может быть дешевле.

Поскольку на ардуине мало разъемов для питания +5В, землю и пин для подключения DS18B20 вывел на монтажную плату. К которой припаял 3 колодки и резистор на 4,7КОм.

Общая схема подключения, извиняюсь за качество. Ну и мог не угадать с цветами проводов, лучше уточнять для каждого компонента:

Общая стоимость всех компонентов обошлась примерно в 1000 рублей, закупался на AliExpress. Заказ лучше делать в одном магазине, получается экономия на стоимости доставки.

Программная часть

Программа на самом деле предельно простая. Управление температурой осуществляется по принципу термостата: холодно – греем, тепло – не греем. Температурный режим, вращение лотков и вентиляция зависят от текущего дня. В общем, смотрите исходники: servo.zip

Поскольку инкубатор делал в подарок, к нему прилагается небольшая инструкция. Если чего не дописал здесь – читайте в инструкции: incubator.pdf.

Полноценно инкубатор пока не использовали, только тестовые запуски: греет быстро, температуру держит, вентиляцию включает своевременно. Когда будет закладка, напишу отдельно о ее результатах.

Блок автоматического управления инкубатором

Автор: Филипович Алексей, servissistemy@narod.ru
Опубликовано 16.08.2012
Создано при помощи КотоРед.

Ну вот и настал долгожданный юбилей у всеми любимого К@та. За сим пишу Котику своё поздравление в виде этой человеческой статьи.

Что больше всего любит Радиокот? Конечно радиодетали и всякие схемки! Ну а как насчёт полакомится свежим, только что вылупившимся из яйца цыплёнком? Фу! Какая гадость скажете Вы и будете конечно правы наш Кот не ест цыплят, но он их разводит… Да-да! Что бы потом, когда они вырастут в больших куриц полакомиться яйцепродуктами и свежеприготовленным куриным рулетиком…м…м… Именно по этому данная статья посвящена… выводу цыплят, а точнее блоку автоматического управления процессом инкубации.

Разработанный блок управления инкубацией (цифровой инкубатор) представляет собой небольшую платку, которая будучи установлена внутри заводского инкубатора или инкубатора выполненного гражданами-самоделкиными по мотивам форума https://www.fermer.ru/forum/samodelnye-inkubatory/115760?page=0 позволяет полностью автоматизировать процесс инкубации. При наличии такого прибора достаточно заложить в инкубатор отборное яйцо и один раз в неделю подливать воду в испаритель. Обо всём остальном разработанный прибор позаботиться самостоятельно! Подходит устройство к инкубаторам самых различных размеров: от бытовых на два десятка яиц, до промышленных на несколько тысяч куриных яиц. Возможность настройки параметров инкубации в широких пределах позволяет выводить даже страусят! И это не шутка!

Вкратце основные технические характеристики предлагаемого читателям устройства автоматического управления инкубатором:

— точное поддержание заданной температуры (выбирается в диапазоне значений 4…99,9°С);

— точное поддержание заданной влажности (выбирается в диапазоне значений 5…99,9%);

— настраиваемый гистерезис поддержания температуры в диапазоне от 0,1 до 9,99°С с шагом 0,01°С;

— настраиваемый гистерезис поддержания влажности в диапазоне от 1 до 9,9% с шагом 0,1%;

— снижение мощности обогревателя и увлажнителя при достижении установленного значения температуры и влажности;

— пять шагов регулировки мощности обогревателя и увлажнителя (0%, 25%, 50%, 75%, 100%);

— тревожная светозвуковая сигнализация отклонения параметров микроклимата за пределы номинальных значений;

— раздельная установка порогов контроля аварийных значений для тревожной сигнализации;

— автоматический поворот лотков с яйцами по истечении заданного промежутка времени (устанавливается в диапазоне 1 минута – 6 часов);

— буквенно-символьный ЖКИ дисплей;

— электронная регулировка яркости подсветки и контрастности дисплея;

— световая (светодиодная) и символьная (на дисплее) индикация текущих значений мощности обогревателя и увлажнителя;

— индикация на дисплее оставшегося до поворота лотков времени;

— подстройка показаний температуры и влажности для компенсации ошибки датчика;

— поворот лотков в противоположное состояние (реверс лотков) при нажатии на кнопку «+»;

— отключение тревожного сигнала при нажатии на кнопку «-»;

— звуковая сигнализация подтверждения нажатий на кнопки управления;

— напряжение питания устройства 9 – 15 В. постоянного тока.

Конструктивно устройство выполнено на базе наиболее дешёвого микроконтроллера семейства AVR Mega ATmega8A. В качестве датчика температуры и влажности может использоваться как высокоточный SHT-21D, так и менее точные SHT10 – SHT15. В качестве ЖКИ-дисплея выбран недорогой ЖК-индикатор со встроенным контроллером SC1602AULT-XH-HS-G, который может быть с лёгкостью заменён на аналогичный.

Принципиальная схема устройства приведена на рисунке ниже, а чертёжи печатных плат устройства и датчиков, а так же прошивки микроконтроллера для различных типов датчиков SHT можно скачать по ссылкам внизу статьи.

Обведённые в прямоугольники части схемы конструктивно размещены на печатных платах. Для соединения датчика температуры и влажности рекомендую использовать экранированный провод или, лучше всего, плоский шлейф из 6-ти проводников с чередованием проводника, соединённого с общим проводом через один (см. чертёж ниже). И не забудьте подключить параллельно выводам питания датчика керамический SMD-конденсатор ёмкостью 0,1 мкФ. Как показывает опыт, несоблюдение этого требования, а так же соединение неиспользованных контактов датчика между собой и с общим проводом схемы приводит к серьёзным глюкам показаний. Так же производитель датчика не рекомендует использовать для отмывки платы с припаянным датчиком что-либо кроме дистиллированной воды!

При использовании датчика температуры SHT-21 необходимо помнить, что его напряжение питания не должно превышать 3,6 В., поэтому необходимо заменить указанный на схеме интегральный стабилизатор напряжения 78L05 на аналогичный с выходным напряжением 3,3 В., например LM1117-3.3.

Выбор интегральных датчиков SHT фирмы Sensirion обоусловлен их высокой точностью и наличием цифрового интерфейса. Как показала практика традиционный способ расчёта влажности на основе показаний сухого и влажного термометров не даёт приемлемого результата из-за малой скорости аспирации в инкубационной камере, а так же влиянии на показания психрометра давления воздуха, которое будет выше атмосферного при работе вентилятора системы воздухообмена в промышленных инкубаторах. На практике разница в показаниях гигрометра на основе психрометрического метода, цифрового датчика влажности SHT-21 и механического гигрометра на основе конского волоса достигала 25% (15% влажность в камере, рассчитанная по показаниям психрометра, 43,4% показания датчика SHT-21 и около 40% показания волосного гигрометра).

Как видно из схемы устройства для поворота лотков используется механизм, который управляется электромагнитным реле, содержащим две группы переключающих контактов. Управление мощностью обогревателя и увлажнителя осуществляется путём пропуска полупериодов сетевого напряжения. Для этого на плате блока управления установлены оптопары типа MOC3062 со встроенной схемой контроля перехода сетевым напряжением через ноль. Подключённые к оптопарам симисторы осуществляют коммутацию нагревательных элементов, а светодиоды HL1 и HL2 служат для световой индикации состояния нагревательных элементов. Реле К1 используется для включения вентилятора аварийного проветривания инкубационной камеры при переувлажнении или перегреве. Контакты К1.2 этого реле могут так же использоваться для аварийного отключения нагревательных элементов при пробое симисторов. Обведённые красной линией элементы принципиальной схемы устанавливаются на отдельных платах. Элементы обведённые синим цветом, в том числе и источник питания с выходным напряжением 12 В., присутствуют в любом стандартном инкубаторе. Бипер BF1 со встроенным генератором и светодиод HL3 служат для светозвуковой индикации аварийного состояния инкубатора. Бипер будет прерывисто пищать, а светодиод мигать до тех пор, пока не будет устранена аварийная ситуация или не нажата кнопка «-» на клавиатуре управления. Для усиления громкости звука возможно подключение нескольких 12-вольтовых биперов в параллель или применение иного звукового сигнализатора, управляемого от 12 В.

При снижении температуры или влажности ниже нижнего аварийного порога автоматически включается увлажнитель или обогреватель на полную мощность (100% мощности), не зависимо от установок параметров температуры и влажности в меню «Параметры инкубации» устройства.

При повышении влажности до верхнего аварийного порога независимо от установленных в меню «Параметры инкубации» значения влажности и гистерезиса регулирования влажности увлажнитель полностью отключается и включается вентилятор проветривания инкубационной камеры, а в случае перегрева из-за пробоя симистора и подключении контактов К2.2 реле произойдёт полное отключение нагревательного элемента увлажнителя. При повышении температуры до верхнего аварийного порога кроме полного отключения обогревателя и подачи светозвукового сигнала тревоги, произойдёт так же включение вентилятора аварийного проветривания, отключение цепи обогрева, а так же увлажнителя (вдруг перегрев вызван отсутствием воды в испарителе?). Таким образом, в алгоритме работы блока контроля инкубации реализовано двойное резервирование работы в аварийных ситуациях, что позволяет уберечь зародышей цыплят от гибели практически в любых ситуациях.

Теперь несколько фотографий, описание меню и настроек устройства:

При первом включении устройства для сброса параметров по умолчанию необходимо удерживать в нажатом состоянии кнопку «ОК». При этом в энергонезависимую память микроконтроллера будут записаны необходимые для нормальной работы устройства параметры. Без выполнения сброса настроек дисплей устройства, ввиду наличия электронной регулировки контрастности не будет отображать символы.

При включении устройства в сеть отобразится приветственная надпись и трижды плавно мигнёт подсветка.

В рабочем режиме в верхней строке экрана отображаются текущие значение температуры и влажности, а в нижней строке поочерёдно оставшееся время до поворота лотков и текущие значения мощностей обогревателя и увлажнителя.

При удержании кнопок «+» и «-» в течение трёх секунд устройство переходит в режим подстройки показаний термометра и гигрометра. В этом режиме рекомендуется (но не обязательно) подстроить показания температуры влажности по образцовым приборам при температуре близкой к температуре инкубации, так как любые датчики имеют некоторую фиксированную погрешность измерения. В верхней строке дисплея отображаются измеренные прибором датчиком значения, а в нижней строке мигает выбранный для изменения параметр. Нажатием кнопок «+» или «-» можно установить показания температуры и влажности по образцовым приборам. Разность показаний между истинными и измеренными параметрами микроклимата запоминается микроконтроллером и в дальнейшем корректируется с учётом внесённой поправки. Для выхода из меню калибровки датчика необходимо нажать кнопку «ОК», при этом разность значений будет сохранена в энергонезависимой памяти микроконтроллера.

Для входа в меню основных настроек необходимо нажать и удерживать около 3-х секунд кнопку «ОК». В этом случае экран устройства примет вид указанный на фото ниже. Кнопками «+» и «-» осуществляется выбор пункта меню, а кратковременное нажатие кнопки «ОК» приводит ко входу в подменю настройки соответствующих параметров. Для выхода из меню необходимо так же удерживать кнопку «ОК» в течение примерно 3-х секунд. При отсутствии нажатий на кнопки управления выход из меню произойдёт автоматически по прошествии 30-ти секунд.

В подменю переход к настройке следующего параметра и запоминание текущего производится нажатием кнопки «ОК». Увеличение и уменьшение величины мигающего параметра осуществляется нажатием кнопок «+» и «-», соответственно. При удержании кнопок «+» и «-» в нажатом состоянии включается режим автоинкремента, при котором изменение регулируемого параметра будет происходить с гораздо большей скоростью…

Время до поворота лотков задаётся в диапазоне от 1 минуты до 6 часов с шагом 1 секунда (смотрите рисунок ниже). На фото плохо видна нижняя строка. Это из-за того что уловить мигающий параметр фотоаппаратом довольно проблематично.

В подменю «Параметры инкубации» можно задать оптимальные для каждого вида яйца параметры микроклимата: температуру, влажность, гистерезис:

При достижении температурой и влажностью установленного значения + порог гистерезиса происходит полное отключение нагревателей. При достижении установленного значения мощность начинает снижаться ступенчато. Логика работы показана на графике ниже.

В общем случае устройство пытается так отрегулировать мощность нагревателей, что бы они всегда были включены на небольшую мощность, что способствует плавному регулированию температуры и её выравниванию в различных точках инкубационной камеры. Некоторый рост температуры после полного отключения нагревателя (виден на графике) объясняется тепловой инерционностью нагревательного элемента и, как видно учтён программно. Та же ситуация и с влажностью. (Мигающий параметр хоть убей плохо выходит на фото. )

В меню «Пороги аварийных режимов работы» задаются пороги при которых будет срабатывать светозвуковая сигнализация и контролироваться аварийные режимы. Аварийные пороги параметров задаются относительно установленных значений температуры и влажности в пределах ±9,9°С для температуры и ±25% для влажности

В верхней строке дисплея отображаются заданные максимально допустимые значения превышения температуры и влажности над установленными, по достижении которых отключаются нагревательные элементы и включается вентилятор аварийного охлаждения. В нижней строке – минимально допустимые значения параметров микроклимата, относительно установленного значения, при которых соответствующий нагревательный элемент включается на полную мощность. Во избежание чрезмерного роста температуры внутри инкубационной камеры при полном испарении воды из увлажнителя обработка аварийной ситуации по температуре имеет некоторое преимущество перед влажностью. В описанной ситуации, когда «голый» нагревательный элемент в увлажнителе будет греть и осушать воздух в инкубационной камере при отсутствии воды в ёмкости, приведёт к включению вентилятора аварийного охлаждения и полному отключению как нагревательного элемента увлажнителя, так и нагревателя термостата. В этом случае произойдёт некоторое остужение «внутренностей» инкубатора, а за счёт «подсосанного» из вне вентилятором воздуха хоть малое, но всё же увлажнение. Включившейся прерывистый светозвуковой сигнал тревоги оповестит об аварийной ситуации и необходимости подлива воды в увлажнитель. Для отключения звукового сигнала необходимо нажать кнопку «-». При нормализации параметров и возникновении последующей аварийной ситуации звуковой сигнал будет включён заново, не смотря на его отключение в предыдущий раз.

Подпункты меню «Яркость подсветки дисплея» и «Контрастность дисплея» именно эти параметры и позволяют отрегулировать…

При установке датчика температуры и влажности в инкубаторе рекомендую использовать следующую конструкцию:

Датчик температуры размещается на плате (см. фото) и помещается в трубку диаметром 12-16 мм., которая опускается с верху до центра (или практически центра) инкубационной камеры вблизи передней стенки. Нижний конец трубки закрывается металлической или капроновой сеточкой с ячейкой размерами около 1 мм., во избежание попадания пуха и иных посторонних предметов. Верхний конец трубки так же закрывается сеточкой и выводится за пределы инкубационной камеры для обеспечения постоянной циркуляции нагретого воздуха из камеры через трубку с датчиком за пределы инкубатора. Провод, соединяющий датчик температуры и влажности с платой устройства управления выводится в верхней части трубки через просверленное боковое отверстие. При подобной конструкции датчика (см. чертёж выше) и его размещении будет обеспечена наивысшая точность измерений параметров микроклимата внутри инкубационной камеры, надёжность и слаженность работы всей системы в целом.


Плата устройства разработана таким образом, что бы её сборка не вызвала особых проблем даже у начинающего радиолюбителя и при этом обладала бы минимальными габаритными размерами. Фотографии готового устройства приведены ниже.


Скачать чертежи печатной платы устройства управления инкубатором, платы для монтажа датчиков температуры можно по ссылкам ниже. Там же архив с различными версиями прошивок: как для разных датчиков, так и для разных дисплеев и даже на разных языках.

В конце хотелось бы упомянуть о задействованном сторожевом таймере микроконтроллера, что гарантирует перезагрузку микроконтроллера если вдруг… тьфу… тьфу… тьфу… что-нибудь пойдёт не так.

Как должны быть установлены фузее-биты микроконтроллера изображено на рисунке ниже.

ТЕРМОРЕГУЛЯТОР СВОИМИ РУКАМИ

С ранней весны и до середины лета — пора инкубаторов. Почти все, имеющие в своём подворье птиц пользуются инкубаторами. С ним удобно в любой период времени вывести необходимое количество любой породы птицы. Не надо ждать когда сядет на гнездо наседка.

Неотъемлемая часть любого инкубатора — это терморегулятор! От его надёжности и точности зависит и вывод птицы.

Необязательно использовать программируемый цифровой дорогой терморегулятор. Со своей задачей отлично справляется терморегулятор, предложенный в этой статье. Простая и надёжная схема терморегулятора для инкубатора на одной простой и недорогой микросхеме К561ЛА7 предложена ниже.

Простая, потому что кучу транзисторов заменила одна микросхема.

Надёжная, потому что в схеме используются некоторые моменты:

  1. Для падения напряжения с 220В до 9В используется резистор, а не конденсатор (как часто бывает в других схемах). Он намного надёжнее.
  2. Лампы включены последовательно-параллельно, что тоже надёжнее чем просто параллельное включение.
  3. При плохом контакте переменного резистора «температура» произойдёт отключение ламп, а не наоборот.
  4. Микросхема К561ЛА7 (как показала практика) более надёжная чем ОУ или PIC.

На первом элементе DD1.1 собран пороговый элемент, который меняет с 1 на 0 свое положение на выходе при заданной температуре. Регулятором «Температура» меняется этот порог.

На втором элементе DD1.2 собран формирователь импульсов для правильной работы тиристора.

Третий элемент DD1.3 — сумматор.

Четвёртый элемент DD1.4 — свободен и может использоваться (в крайнем случае) для замены одного из остальных элементов в случае его выхода из строя.

Микросхему К561ЛА7 можно заменить её импортным аналогом CD4011B.

Ток потребления схемы по 9В — 5 мА, температура R13 примерно 60 — 70 гр. — это нормальный режим резистора.

Импульсы, поступающие на транзистор открывают его, что способствует в последствии открыванию тиристора.

Тиристор (Т122 или КУ202Н,М,Л) — мощный коммутирующий элемент схемы. Тиристор (если используется КУ202Н,М,Л) без радиатора способен коммутировать нагрузку до 300 Вт. Обычно это хватает. Если у вас нагрузка превышает данное значение, то тиристор необходимо поставить на радиатор. Максимальное значение 1000 Вт. А также можно установить более мощный тиристор — Т122.

Рассчитать нагрузку для инкубатора просто. Включаем нагреватели (лампы) через данный регулятор температуры на полную. И контролируем по термометру температуру. Даже на полную (лампочки не отключаются) температура в инкубаторе не должна подниматься выше 50 градусов.

Так как, в процессе эксплуатации нити ламп сильно провисают и перегорают. Есть опасность выхода из строя тиристора. Поэтому лампы рекомендуется соединять последовательно-параллельно, как указано на схеме, для большей продолжительности срока службы ламп и схемы.

Так как в инкубаторе очень высокая влажность на датчик температуры — терморезистор необходимо надеть кусочек трубочки и залить с двух сторон водостойким клеем или герметиком. Это лучше проделать несколько раз с периодом в несколько часов после высыхания. Торец терморезистора можно оставить на поверхности для большей чувствительности.

Схема универсальна к выбору терморезисторов. Номинал терморезистора подходит в широких пределах. Я пробовал от 1 кОма до 15 кОм, которые были у меня в наличии. Подойдут и другие. Правильный режим работы необходимо подобрать делителем на R2, R3. Подобрать R3 можно по таблице ниже.

Читайте также:  Литиевые аккумуляторы для шуруповерта деволт
Оценить статью
Добавить комментарий