Конструкция электрического конденсатора с воздушным диэлектриком

Конструкция электрического конденсатора с воздушным диэлектриком

Содержание

Глава 9. Конденсаторы с газообразным диэлектриком

Особенности газообразных диэлектриков:

— невозможность их использования для закрепленных обкладок, поэтому в конструкции конденсаторов используют дополнительный твердый диэлектрик, служащий для обеспечения требуемого зазора между обкладками разного знака. Наличие твердого диэлектрика создает дополнительную паразитную емкость, включенную параллельно основной емкости и способную вызвать ухудшение характеристик конденсатора;

— восстанавливаемость электрической прочности конденсаторов после пробоя. Однако, если мощность источника энергии велика и пробой может перейти в дугу, то обкладки могут оплавиться и свариться.

Преимущества газообразного диэлектрика: малая проводимость, малый меньше при исключении ионизации, независимость от частоты и малая зависимость от температуры, полное отсутствие явления абсорбции (), поэтому газообразный диэлектрик применяют в образцовых конденсаторах и в различных типах высокочастотных конденсаторов.

Недостатки газообразного диэлектрика: низкое значение диэлектрической проницаемости (), необходимость применения больших зазоров между обкладками (при малых напряжениях – из конструктивных соображений, при высоких напряжениях – из-за низкой электрической прочности газов при обычных давлениях). Малая и сравнительно большое значение приводят к малым значениям удельной емкости , что ограничивает предельные значения номинальной емкости конденсаторов с газообразным диэлектриком величиной порядка 1000 пФ, редко до 0,01 пФ. При высоком напряжении, даже при небольшой емкости, воздушные конденсаторы исключительно громоздки. В этом случае необходима замена воздуха сжатым газом или вакуумом для повышения электрической прочности.

Газонаполненные конденсаторы нашли себе основное применение при U=100-500 кВ и выше в качестве образцовых конденсаторов. При использовании газообразного диэлектрика легко осуществить изменение емкости за счет перемещения одной системы обкладок по отношению к другой. Поэтому как воздушные, так и газонаполненные, а также и вакуумные конденсаторы находят себе применение и в качестве конденсаторов переменной емкости.

Читайте также:  Композиции из природного материала своими руками осень

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9021 — | 7253 — или читать все.

Конденсатор — это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

Виды конденсаторов

Бумажные и металлобумажные конденсаторы

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

Электролитические конденсаторы

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.

К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.

Конденсаторы с воздушным диэлектриком

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

Одним из самых распространенных элементов в электрических цепях является конденсатор.
Конденсатор – это накопитель электрической энергии.
Его назначение:

  • запасать (заряжаться) электрический заряд в момент подключения к электрическому источнику;
  • отдавать (разряжаться) электрический разряд в нагрузку в момент пропадания напряжения от электрического источника (батареи).

Способность тела накапливать определенное количество электричества с одновременным ростом потенциала называется ЭЛЕКТРИЧЕСКОЙ ЕМКОСТЬЮ.
В формуле C = Q/U выражена зависимость емкости конденсатора С от количества запасенной энергии Q в конденсаторе и величины напряжения U на его обкладках.
Где:

  • С – е мкость конденсатора в фарадах ( Ф )
  • Q – количество электрического заряда в кулонах ( К
  • U – напряжение в вольтах (В)

Емкость в 1 Фарад очень большая величина. Обычно пользуются мелкими ее единицами.
Где:

  • Ф – Фарад,
  • мкФ – микроФарад — тысячная доля Фарада,
  • нФ – наноФарад — миллионная доля Фарада,
  • пФ – пикоФарад — миллиардная доля Фарада.

Простейший, т.н. плоский конденсатор, состоит и з 2-х близко расположенных металлических пластин (обкладок), между которыми помещен какой либо диэлектрик (воздух, бумага, слюда, керамика и т.д.). Емкость конденсатора зависит от площади поверхности пластин, расстояния между ними и электрической проницаемости диэлектрика. C = µ • S/d
где:

  • С – емкость в пф
  • S – площадь поверхности пластин (обкладок) в см.кв.
  • d – расстояние между пластинами в мм.

Емкость конденсатора сильно зависит от вещества диэлектрика,находящегося между пластинами, его электрической проницаемост и µ .

Значение рабочего напряжения конденсатора (напряжение, при котором он долгое время сохраняет свои электрические свойства), зависит от электрической прочности диэлектрика. Воздух обладает малой электрической прочностью, твердые диэлектрики имеют высокую электрическую прочность на пробой. На корпусе конденсатора обычно указывается его тип, рабоче напряжение, величина емкости.

В электрических цепях и цепях управления электрическими сигналами используют нерегулируемые (постоянные) и регулируемые (переменные) конденсаторы.
Конденсаторы переменной емкости состоят из блока неподвижных (статор) и блока подвижных (ротор) пластин, разделенных диэлектриком (обычно воздух). При вращении ротора изменяется площадь взаимного перекрытия пластин и соответственно изменяется величина емкости конденсатора. Емкость конденсатора также может изменяться и от изменения расстояния между пластинами.

По типу диэлектрика, конденсаторы делятся на группы:

1. Конденсаторы с воздушным диэлектриком.

Это конденсаторы переменной и постоянной емкост
Применяются в основном в схемах радиотехники и автоматики. Емкость у них в пределах 1 – 1000 пФ. Рабочее напряжение от десятков до сотен вольт.

2. Конденсаторы с твердым диэлектриком.

В качестве диэлектрика используется бумага, слюда, керамика и др. емкость этих конденсаторов в пределах 1 пФ – 100 мкФ, рабочее напряжение до тысяч вольт.

3. Конденсаторы с жидким диэлектриком.

Это электролитические или оксидные конденсаторы.В качестве диэлектрика в них используется тончайшая пленка оксида алюминия, полученная в результате электрохимической реакции.

Благодаря ничтожно малой толщине этого слоя, удается получить очень большие величины емкостей.Электролитический конденсатор состоит из 2-х алюминиевых пластин, помещенных в электролит или специальную пасту. Пластина с оксидной пленкой – одна из обкладок конденсатора . Второй обкладкой служит электролит или паста. Алюминиевая пластина без пленки обеспечивает контакт с электролитом.

Электролитические конденсаторы применяются в цепях постоянного и пульсирующего напряжения, его нельзя включать в цепи переменного тока. На корпусе указывается полярность подключения: плюс (+), минус (-). Корпус электролитического конденсатора обычно есть минус.

Если соединить последовательно два конденсатора одинаковой емкости навстречу друг другу (плюс с плюсом или минус с минусом) то получится неполярный конденсатор. Его можно включать в цепь переменного тока. Общая емкость и рабочее напряжение будут равны емкости и напряжению одного конденсатора.

К достоинствам электролитических конденсаторов относятся:

  • — относительно малые размеры и масса,
  • — большая емкость (до десятков тысяч микрофарад).

К недостаткам электролитических конденсаторов относятся:

  • — сравнительно малое рабочее напряжение (до 500 В)
  • — значительный ток утечки, значительные потери энергии
  • — конденсатор имеет полярность, (нельзя включать в цепь переменного тока)
  • — снижение емкости при длительном использовании (высыхает электролит).

Так же к недостаткам можно отнести частичное разрушение оксидной пленки после длительного хранения, ток утечки конденсатора при этом возрастает в десятки раз.
Этот недостаток можно исправить. Конденсатор можно отформовать, т.е. поставить его на некоторое время (достаточно одного часа) под напряжение ниже рабочего, указанного на корпусе. Напряжение следует подавать через гасящий резистор 1 — 5 КОм с соблюдением полярности подключения. Оксидная пленка восстанавливается.

4. Конденсатор, где ПОЛУПРОВОДНИКОВЫЙ ПЕРЕХОД диода выступает в РОЛИ ДИЭЛЕКТРИКА .
Любой полупроводниковый диод, если подать на него обратное напряжение, образует запирающий слой, не пропускающий обратный ток. Ширина этого слоя зависит от запирающего напряжения.

Образуется конденсатор с диэлектриком в виде запирающего слоя и обкладками. Если напряжение, смещающее диод в обратном направлении возрастает, емкость диода уменьшается и наоборот, при уменьшении напряжения обратного смещения до нуля, емкость увеличивается до максимума.

В зависимости от типа конденсатора и приложенного напряжения смещения , емкость его может меняться от 1 пФ до 500 пФ.

Полупроводниковый конденсатор – это варакторный диод – варикап . Находит применение в резонансных цепях в радиоприемной и радиопередающей аппаратуре перестраиваемой с помощью управляющего напряжения. Варикап применяется вместо переменного конденсатора.

Оценить статью
Добавить комментарий