Коэффициент несимметрии по обратной последовательности это

Коэффициент несимметрии по обратной последовательности это

Содержание лекции: несимметрия напряжения, влияние несимметрии напряжения на работу электрооборудования.

Цель лекции: изучить основные формулы расчета несимметрии напряжения.

Несимметрия напряжения – это несимметрия трёхфазной системы напряжений. Характеризуется коэффициентом обратной и нулевой последовательности. Несимметрия напряжений происходит только в трёхфазной сети под воздействием неравномерного распределения нагрузок по её фазам [4, 8].

Источниками несимметрии напряжений являются дуговые сталеплавильные печи, тяговые подстанции переменного тока, электросварочные машины, однофазные электротермические установки и другие одно фазные, двухфазные и несимметричные трёхфазные потребители электроэнергии, в том числе бытовые. Так, суммарная нагрузка отдельных предприятий содержит 85-90% несимметричной нагрузки. А коэффициент несимметрии напряжения по нулевой последовательности (K0U) одного 9-и этажного жилого дома может составлять 20%, что на шинах трансформаторной подстанции (точке общего присоединения) может обусловить превышение, нормально допустимые 2%.

Влияние несимметрии напряжений на работу электрооборудования:

— в электрических сетях возрастают потери ЭЭ от дополнительных потерь в нулевом проводе;

— однофазные, двухфазные потребители и разные фазы трёхфазных потребителей ЭЭ работают на различных не номинальных напряжениях, что вызывает те же последствия, как при отклонении напряжения;

— в ЭД, кроме отрицательного влияния не несимметричных напряжений, возникают магнитные поля, вращающиеся встречно вращению ротора;

— общее влияние несимметрии напряжений на электрические машины, включая трансформаторы, выливается в значительное снижение срока их службы.

Например, при длительной работе с коэффициентом несимметрии по обратной последовательности K2U=2-4%, срок службы электрической машины снижается на 10-15%, а если она работает при номинальной нагрузке, срок службы снижается вдвое.

Поэтому ГОСТ 13109-97 устанавливает значения коэффициентов несимметрии напряжения по обратной (K2U) и нулевой (K0U) последовательностям, — нормально допустимое 2% и предельно допустимое 4%. В качестве вероятного виновника несимметрии напряжений ГОСТ 13109-97 указывает потребителя с несимметричной нагрузкой. [2,4]

Мероприятия по снижению несимметрии напряжений:

— равномерное распределение нагрузки по фазам (см. рисунок 6.1). Это наиболее эффективное мероприятие, но оно требует творческого подхода при проектировании электроустановок и решительности при эксплуатации;

— применение симметрирующих устройств. Сопротивления в фазах симметрирующего устройства (СУ) подбираются таким образом, чтобы компенсировать ток обратной последовательности, генерируемый нагрузкой как источником искажения. Применение симметрирующих устройств сопровождается дополнительными капитальными затратами на их приобретение и монтаж, затратами на обслуживание и эксплуатацию.

Рисунок 6.1 – Распределение нагрузки по фазам

Наиболее распространенными источниками несимметрии напряжений в трехфазных системах электроснабжения являются такие потребители электроэнергии, симметричное многофазное исполнение которых или невозможно, или нецелесообразно по технико-экономическим соображениям. К таким установкам относятся индукционные и дуговые электрические печи, тяговые нагрузки железных дорог, выполненные на переменном токе, электросварочные агрегаты, специальные однофазные нагрузки, осветительные установки.

Несимметричные режимы напряжений в электрических сетях имеют место также в аварийных ситуациях – при обрыве фазы или несимметричных коротких замыканиях.

Несимметрия напряжений характеризуется наличием в трехфазной электрической сети напряжений обратной или нулевой последовательностей, значительно меньших по величине соответствующих составляющих напряжения прямой (основной) последовательности.

Несимметрия трехфазной системы напряжений возникает в результате наложения на систему прямой последовательности напряжений системы обратной последовательности, что приводит к изменениям абсолютных значений фазных и междуфазных напряжений (см. рисунок 6.2).

Рисунок 6.2 – Векторная диаграмма напряжений прямой и обратной последовательности

Помимо несимметрии, вызываемой напряжением системы обратной последовательности, может возникать несимметрия от наложения на систему прямой последовательности напряжений системы нулевой последовательности. В результате смещения нейтрали трехфазной системы возникает несимметрия фазных напряжений при сохранении симметричной системы междуфазных напряжений (см. рисунок 6.3).

Рисунок 6.3 – Векторная диаграмма напряжений прямой и нулевой последовательности

Несимметрия напряжений характеризуется следующими показателями:

— коэффициентом несимметрии напряжений по обратной последовательности;

— коэффициентом несимметрии напряжений по нулевой последовательности.

Коэффициент несимметрии напряжений по обратной последовательности равен, %:

где U2(1) – действующее значение напряжения обратной последовательности основной частоты трехфазной системы напряжений, В;

U1(1) – действующее значение напряжения прямой последовательности основной частоты, В.

где Uном.мф – номинальное значение междуфазного напряжения сети, В.

Коэффициент несимметрии напряжений по нулевой последовательности равен, %:

где U0(1) – действующее значение напряжения нулевой последовательности основной частоты трехфазной системы напряжений, В.

где Uном.ф – номинальное значение фазного напряжения, В.

Измерение коэффициента несимметрии напряжений по нулевой последовательности проводят в четырехпроводной сети.

Относительная погрешность определения К2U и К0U по формулам численно равна значению отклонений напряжения U1(1) от Uном.

Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точке общего присоединения к электрическим сетям равны 2,0 и 4,0 %.

Нормированные значения коэффициента несимметрии напряжений по нулевой последовательности в точке общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ также равны 2,0 и 4,0 %.

Несимметричным режимом работы системы электроснабжения называют такой режим, при котором условия работы одной или всех фаз сети оказываются неодинаковыми. Различают кратковременные и длительные несимметричные режимы. Кратковременная несимметрия обычно связана с аварийными процессами в электрических сетях, такими как КЗ, обрыв проводников с замыканием на землю, отключение фазы при однофазном АПВ. Длительная несимметрия возникает при наличие несимметрии в том или ином элементе электрической сети или при подключении к системе электроснабжения несимметричных приемников электрической энергии. К числу таких приемников относятся осветительные приборы, однофазные установки электросварки, индукционные и дуговые сталеплавильные печи, установки электрошлакового переплава, электровозы переменного тока.

Наличие несимметрии нагрузок фаз вызывает появление токов обратной и нулевой последовательности. Эти токи, протекая по элементам сети, вызывают в них падения напряжения соответственно обратной и нулевой последовательности, которые, складываясь с напряжением прямой последовательности промышленной частоты, приводят к возникновению несимметрии напряжения сети.

Несимметрия напряжения характеризуется следующими показателями:

  • коэффициентом несимметрии напряжений по обратной последовательности;
  • коэффициентом несимметрии напряжений по нулевой последовательности.

Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0 % соответственно.

Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0 и 4,0 % соответственно.

Коэффициент несимметрии напряжения по обратной последовательности

%, (6.1)

где – действующее значение обратной последовательности напряжения,

. (6.2)

Здесь – эквивалентный ток обратной последовательности, обусловленный несимметричными нагрузками;

– суммарное сопротивление обратной последовательности сети.

При подключении однофазных нагрузок на линейное напряжение ток обратной последовательности и начальная фаза этого тока определяются по соотношениям

, (6.3)

(6.4)

или через мощности

, (6.5)

, (6.6)

где – фазный угол нагрузки.

В общем случае относительное значение сопротивления обратной последовательности по отношению к секции или системе шин

, (6.7)

где – номинальная мощность и фазный угол i-го присоединения линейной или нелинейной части нагрузок; – относительное значение полной проводимости i-го присоединения.

. (6.8)

Обычно определение коэффициента несимметрии напряжения по обратной последовательности проводится по схеме замещения сети с представлением ее элементов в виде проводимостей:

, (6.9)

При этом сопротивления обратной последовательности элементов схем замещения определяются по выражениям

, (6.10)

• сопротивление батареи конденсаторов –

, (6.11)

• сопротивление симметричной нагрузки –

, (6.12)

где при ; при ,

, (6.13)

где ;

– кратность пускового тока,

, (6.14)

где — потребляемая мощность преобразователя.

Пример 4.

К шинам распределительного устройства подключены следующие нагрузки (рис.6.1): трехфазная симметричная мощностью , две однофазные мощностью и , включенные на разные междуфазные напряжения, и батарея статических конденсаторов мощностью . Мощность короткого замыкания на шинах распределительного устройства . Требуется определить коэффициент несимметрии напряжения по обратной последовательности и оценить его допустимость.

Расчет несимметрии напряжения производится по схеме замещения сети обратной последовательности (рис.6.2), в которой источник несимметрии (однофазная нагрузка) учитывается током обратной последовательности (I2), а элементы схемы (симметричная нагрузка, БСК, система) представляются в виде проводимостей обратной последовательности.

Схема замещения сети представлена на рис. 6.2.

Параметры схемы замещения:

,

,

.

Суммарная проводимость обратной последовательности

,

.

Мощность однофазной (эквивалентной) нагрузки, включенной на линейные напряжения (UАВ и UВС):

Ток обратной последовательности однофазной нагрузки определяется по выражению

,

Напряжение обратной последовательности

.

Коэффициент несимметрии напряжения по обратной последовательности

%.

Для данной схемы нормально допустимое значение коэффициента несимметрии напряжения по обратной последовательности равно .

При этом получаем , следовательно, совместная работа трехфазной и однофазной нагрузок допустима.

Несимметрия напряжений характеризуется следующими показателями:

— коэффициентом несимметрии напряжений по обратной последовательности;

— коэффициентом несимметрии напряжений по нулевой последовательности.

Нормы приведенных показателей установлены в 1, 2.

1 Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по обратной последовательности в точках общего присоединения к электрическим сетям равны 2,0 и 4,0 % соответственно.

2 Нормально допустимое и предельно допустимое значения коэффициента несимметрии напряжений по нулевой последовательности в точках общего присоединения к четырехпроводным электрическим сетям с номинальным напряжением 0,38 кВ равны 2,0 и 4,0 % соответственно.

Причины, которые вызывают несимметрию

Напряжение в трехфазной сети может быть симметричным. Несимметричное напряжение нормируется по его параметрам на основной частоте. Если амплитуды фазных напряжений равны и сдвиг фаз (угол между ними) одинаков, то напряжение симметрично. Аналогичное определение может быть распространено и на токи.

Рисунок 1 — Векторная диаграмма напряжений, иллюстрирующая искажение симметрии напряжения

При этом всегда при оценке несимметрии напряжения трехфазной сети в соответствии с требованиями ГОСТ 13109-97 имеют в виду напряжение (ток) основной частоты (1-я гармоника). Тогда как несим­метричная система может быть образована на любой частоте, в том числе и на частоте высших гармоник. Это обстоятельство необхо­димо учитывать при расчете или измерении симметричных составляющих напряжений (токов) в сети с несинусоидалышм напряже­нием следующим образом: сначала выделяют основную гармонику напряжения, а затем рассчитывают ее симметричные составляющие.

Причин несимметрии напряжений много, но основная из них — это несимметрия токов в сети, что обусловлено неравенством нагрузки по фазам. Значительная часть бытовых и промышленных электроприемников имеют одно- или двухфазное исполнение и при­соединяются к сетям 380 В. Именно для питания таких электропри­емников сети напряжением 380 В имеют четырехпроводное исполне­ние. Обмотка 380 В трансформаторов, питающих такие сети, соеди­нена в «звезду», а ее нейтраль выводится четвертым токоведушим проводом. Без «нулевого» провода эксплуатация сети невозможна. При его обрыве наступает аварийная ситуация, обусловленная существенной несимметрией напряжения. При этом на отдельных фазах напряжение приближается к междуфазному (380 В), а на дру­гих — к нулю.

Несимметрия напряжений наблюдается в сетях 6—10 кВ как результат нссимметрии нагрузки в сетях 380 В. Подключенные к сетям 6—10 кВ электроприемники имеют трехфазное исполнение. Однако и среди них имеются такие, которые способны создавать несимметрию. К ним относятся, например, дуговые сталеплавильные печи. Регулирование тока электрической дуги в таких печах осущест­вляется пофазно. В режиме расплава могут возникать и эксплуатаци­онные несимметричные короткие замыкания. Высокопроизводитель­ные ДСП-100 и ДСП-200 получают питание от сетей 110—330 кВ.

В сетях высокого напряжения несимметрия может быть обуслов­лена конструкцией линии из-за неравенства ее сопротивлений по фазам. Для симметрирования сопротивлений фаз линии проводят транспозицию фазных проводов, что требует сооружения специаль­ных транспозиционных опор. Конструкции таких опор сложные и дорогостоящие, кроме того, они являются элементами, повреждения в которых наиболее вероятны. Поэтому количество опор стремятся уменьшить, что, естественно, отражается на симметрии напряжений, но способствует повышению надежности электроснабжения.

Еше одна причина несимметрии напряжений — это неполнофазные режимы в сетях с изолированной нейтралью. Их относят к осо­бым, но допустимым по условиям эксплуатации режимам. Эти режимы допускают для сохранения электроснабжения потребителей в ущерб симметрии напряжений на приемном конце такой линии. К таким же особым режимам следует отнести режимы с замыканием на землю одной из фаз в сетях с изолированной нейтралью.

Несимметрию напряжений (токов) характеризуют симметрич­ными составляющими основной частоты прямой, обратной и нулеой последовательности. Прямая последовательность является основ­ной составляющей. Именно она определяет чередование фазных (междуфазных) напряжений и рабочее (номинальное) напряжение сети. Напряжение обратной и нулевой последовательности следует рассматривать как помеху, под влиянием которой в цепи трехфазной нагрузки протекают соответствующие токи. Эти токи не совершают полезной работы, приводя, например, к снижению вращающего момента на валу вращающихся машин и их дополнительному нагреву. Утроенное значение токов нулевой последовательности в нулевых проводах сетей напряжением 380 В приводит к их пере­грузке. Замыкаясь в обмотках трансформаторов, соединенных в «треугольник», токи нулевой последовательности создают эффект подмагничивания. Однако благодаря этому токи нулевой последова­тельности не проникают в сеть 6—10 кВ из сети 380 В.

Ущерб от искажения симметрии напряжения

Нормально и предельно допустимые значения коэффициента несим­метрии напряжения по обратной последовательности К согласно ГОСТ 13109—97 для сетей всех номинальных напряжений составляют соответственно ±2 и ±4 %.

Несимметрия трехфазной системы напряжений приводит к воз­никновению токов обратной последовательности I2U, а в четырехпроводных сетях — токов нулевой последовательности IOU.

Токи I2U вызывают дополнительный нагрев вращающихся машин, создавая отрицательный вращающий момент, снижают скорость вра­щения роторов асинхронных двигателей и производительность при­водимых ими механизмов. Снижение скорости вращения, т.е. увели­чение скольжения АД, сопровождается увеличенным потреблением реактивной мощности и, как следствие, снижением напряжения.

При несимметрии напряжений, составляющей 2 %, срок службы асинхронных двигателей ввиду дополнительных потерь активной Мощности сокращается на 10,8 %, синхронных — на 16,2 %, транс­форматоров — на 4 %, конденсаторов — на 20 %. Для того чтобы избежать дополнительного нагрева, нагрузка двигателя (момент на валу) должна быть снижена.

Согласно МЭК 892 номинальная нагрузка двигателя допускается при К2U

Читайте также:  Мощный источник питания схема
Оценить статью
Добавить комментарий