Назначение и классификация электроизмерительных приборов

Назначение и классификация электроизмерительных приборов

Приборы различаются по следующим признакам:

По конструкции– аналоговые и цифровые.

По роду измеряемой величины– амперметры, вольтметры, омметры, ваттметры и многие другие.

По роду тока– для работы на переменном токе, на постоянном токе или на обоих.

По принципу работы измерительного механизма– магнитоэлектрические, электромагнитные, электростатические, электродинамические, ферродинамические и др.

По способу предъявления информации – показывающие, регистрирующие, интегрирующие.

Последняя классификация получила название системыэлектроизмерительных приборов. В данной лабораторной работе мы рассмотрим толькомагнитоэлектрическуюиэлектромагнитнуюсистемы.

Принцип работы электроизмерительных приборов магнитоэлектрической системызаключается во взаимодействии магнитного поля легкой подвижной катушки, по которой протекает измеряемый ток, с магнитным полем неподвижного постоянного магнита. Подвижная катушка механически соединена со стрелкой прибора.

Достоинством приборов этой системы являются:

Высокая чувствительность и точность измерения

Малое потребление мощности.

Существенным недостатком можно считать невозможность работы в цепях переменного тока (без использования выпрямителей).

Принцип работы электроизмерительных приборов электромагнитной системызаключается во взаимодействии ферромагнитного сердечника, соединенного со стрелкой, с магнитным полем неподвижной катушки, по которой протекает измеряемый ток.

Достоинством приборов этой системы являются:

Простота и надежность конструкции

Возможность использования в цепях постоянного и переменного тока

Низкая чувствительность ко внешним магнитным полям

Недостатки приборов электромагнитной системы:

Изо всех типов электроизмерительных приборов в данной работе нас будут интересовать только вольтметрыиамперметры.

Амперметрслужит для измерения силы тока в электрической цепи и включается в цепь последовательно.Вольтметрпредназначен для измерения напряжения на участке цепи и включается в цепь параллельно этому участку.

При включении приборы не должны вносить заметных изменений в параметры цепи. Это значит, что амперметр должен обладать как можно меньшим сопротивлением, а вольтметр – как можно большим.

Основными параметрами электроизмерительных приборов являются:

Предел измерения– максимальное значение величины, соответствующее отклонению стрелки прибора до конца шкалы. Измеряется предел измерения в тех единицах, которые обозначены на шкале прибора. Электроизмерительные приборы могут иметь несколько пределов измерения – многопредельные приборы. Выбор нужного предела производится переключателями пределов в соответствии с ожидаемыми значениями измеряемой величины. Рекомендуется начинать измерения всегда с больших пределов, постепенно увеличивая чувствительность прибора до необходимого уровня. В противном случае можно легко уничтожить прибор, если его предел измерения будет выбран слишком малым, а значения измеряемой величины окажутся неожиданно высокими.

Цена деления шкалы прибора– это отношение значения измеряемой величины к числу делений шкалы, на которое отклонилась стрелка прибора. Вычисляется цена деления прибора по формуле

(7)

где — цена деления шкалы,— значение измеряемой величины,— число делений, на которое отклонилась стрелка прибора. Измеряется цена деления в единицах шкалы на деление, например, у вольтметра. Следует помнить, что цена деления многопредельных приборов на каждом пределе различна!

Чувствительность прибора– это отношение линейного перемещения стрелки прибора к значению измеряемой величины, вызвавшей это перемещение. Вычисляется чувствительность прибора по формуле

(8)

где — чувствительность прибора,— значение измеряемой величины,— число делений, на которое отклонилась стрелка прибора. Измеряется чувствительность в делениях на единицу шкалы, например, у вольтметра. Как видно из формул (7) и (8), чувствительность прибора и цена деления шкалы являются взаимно обратными величинами. Чувствительность многопредельных приборов также своя для каждого предела измерения.

Абсолютная погрешность прибора– величина, равная модулю разности показания прибора и истинного значения измеряемой величины. Вычисляется абсолютная погрешность по формуле

(9)

где — абсолютная погрешность прибора,— истинное значение измеряемой величины,— измеренное с помощью прибора значение величины. Измеряется абсолютная погрешность в тех же единицах, что и сама измеряемая величина.

Относительная погрешность прибора– это отношение абсолютной погрешности к истинному значению измеряемой величины

(10)

где — относительная погрешность прибора,— его абсолютная погрешность,— истинное значение измеряемой величины. Относительную погрешность прибора принято выражать в процентах. На шкалах электроизмерительных приборов символ процента, как правило, не ставится.

Класс точности приборапредставляет собой его приведенную относительную погрешность. Вычисляется класс точности по формуле

(11)

где — класс точности прибора,— его абсолютная погрешность прибора,— предел измерения. Класс точности прибора принято выражать в процентах. На шкалах электроизмерительных приборов символ процента, как правило, не ставится.

Из формулы (11) видно, что при малом отклонении стрелки прибора точность измерений уменьшается. Для повышения точности рекомендуется проводить измерения таким образом, чтобы стрелка прибора находилась во второй половине шкалы.

Расширенные возможности использования электроизмерительных приборов достигаются за счет их многопредельности.Многопредельность– это разбиение одного диапазона измерения физической величины на несколько поддиапазонов, в каждом из которых прибор имеет свою чувствительность. Использование нескольких диапазонов измерений делает прибор более универсальным, в каждом диапазоне чувствительность прибора может быть сделана наиболее оптимальной. Технически многопредельность приборов достигается двумя способами:

Применением измерительных трансформаторов.

Для расширения предела измерения амперметра параллельноему подключается резистор (шунт), сопротивление которого связано с внутренним сопротивлением амперметра соотношением

(12)

где Rш– искомое сопротивление шунта,Rа– внутреннее сопротивление амперметра,I– новое значение предела измерения прибора,I0– номинальное значение предела измерения прибора.

Для расширения предела измерения вольтметра последовательнос ним включается добавочный резистор, сопротивление которого связано с внутренним сопротивлением амперметра соотношением

(13)

где Rд– искомое добавочное сопротивление,RV– внутреннее сопротивление вольтметра,U- новое значение предела измерения прибора,U0— номинальное значение предела измерения прибора.

Предлагаем читателям вывести формулы (12) и (13) самостоятельно, используя закон Ома для участка цепи и соотношения для цепей с последовательным и параллельным соединением.

Использование измерительных трансформаторов для расширения пределов измерения приборов выходит за рамки настоящей лабораторной работы. Информацию по данному вопросу можно найти в литературе по электротехнике.

Рассмотрим простой способ измерения сопротивления проводника с помощью амперметра и вольтметра. В основе этого метода лежит использование закона Ома для участка цепи: измеряя величину тока, протекающего по проводнику, и напряжение на нем, по закону Ома можно рассчитать величину сопротивления:

(14)

Для повышения точности обычно проводится несколько измерений и строится вольтамперная характеристика исследуемого проводника. Для металлических, графитовых и некоторых других проводников вольтамперная характеристика является линейной. Этим мы и воспользуемся при измерении сопротивления резистора в данной работе.

Для оценки погрешности измерения воспользуемся формулой (14), из которой получим выражение для вычисления относительной погрешности сопротивления. Применяя методы оценки погрешности косвенных измерений, прологарифмируем выражение (14)

(15)

Теперь продифференцируем каждое слагаемое по своей переменной:

(16)

Переходя от бесконечно малых приращений к конечным величинам и воспользовавшись свойством, что погрешность разности равна сумме погрешностей, получим окончательно:

(17)

где — абсолютные погрешности соответственно сопротивления, напряжения и тока, а— их измеренные значения. Дробь в левой части формулы (17) – это и есть искомая относительная погрешность измерения сопротивления.

Сегодня сложно представить себе жизнь без электричества. На нем основаны практически все технические достижения нашего мира. Специально для учета и контроля электричества были созданы электроизмерительные приборы. Первым таким прибором стал электроскоп, который был изобретен в 1735 году французским ученым Шарлем Дюфе для определения наличия электрического заряда. Это прибор сыграл очень важную роль в период, когда электричество только начали изучать более подробно. Сегодня электроизмерительных приборов великое множество. Давайте подробно рассмотрим, по каким критериям производят классификацию этих приборов.

Один из самых важных признаков в систематизации аппаратуры для электроизмерений – это измеряемая ими физическая величина. Согласно с этим все электроизмерительные приборы подразделяют на несколько видов:

  • амперметры (приборы для измерения силы тока);
  • вольтметры (приборы для измерения напряжения и электродвижущей силы);
  • омметры (приборы, измеряющие электрическое сопротивление);
  • мультиметры (приборы, которые способны измерять сразу несколько показателей, например, силу тока, напряжение, сопротивление, емкость и индуктивность);
  • частотомеры (приборы, измеряющие частоту колебаний тока);
  • варметры и ваттметры (приборы для измерения электрической мощности);
  • электрические счетчики (приборы для измерения электроэнергии, потребленной за определенный период);
  • и др.

Электроизмерительные приборы также классифицируются по следующим признакам:

  • назначение;
  • методы предоставления замеренных показателей;
  • методы измерения;
  • конструкция и способы применения;
  • принцип действия;
  • класс точности;
  • род тока.

По назначению различают приборы меры, измерительные преобразователи, измерительные системы и установки и вспомогательные устройства. Результаты измерений могут предоставляться в двух видах, в связи с чем, и представлено разделение на показывающие и регистрирующие приборы. Показывающие приборы выдают значение измеряемой величины в виде цифровых значений на шкале или электронном табло. Регистрирующие приборы предоставляют показания измерений в виде различных графиков и диаграмм на бумаге или фотопленке.

По методам измерения различают электроизмерительные приборы сравнения и оценки. По условиям эксплуатации и конструкции приборы бывают переносные, щитовые и стационарные.

Согласно принципу действия электроизмерительные приборы разделяют на магнитоэлектрические, электродинамические, электромеханические, электромагнитные, индукционные, электростатические, магнитодинамические, ферродинамические, электронные, электрохимические и термоэлектрические. Классификация электроизмерительных приборов по роду тока помогает определить, в каких цепях какого тока может применяться тот или иной измерительный аппарат. Как правило, на приборе с помощью условных обозначений помечают, работает ли он в сетях переменного или постоянного тока. На приборах переменного тока дополнительно указывается диапазон частот, в котором они могут работать.

По классу точности определяют степень погрешности того или иного прибора. Как правило, класс точности также указывается в основных параметрах прибора. Класс точности равен допустимой приведенной погрешности и может колебаться в пределах от 0,05% до 4,0%. Чем ниже процент, тем точнее показываемые прибором результаты измерений. Класс точности приборов определяет максимальную погрешность прибора, которая может быть обусловлена конструктивными особенностями, технологией производства и др. Класс точности показывает отклонения в измерениях при нормальных условиях работы прибора.

Электроизмерительные приборы можно классифицировать по следующим признакам:
методу измерения;
роду измеряемой величины;
роду тока;
степени точности;
принципу действия
.

Существует два метода измерения:

1) метод непосредственной оценки, заключающийся в том, что в процессе измерения сразу оценивается измеряемая величина;

2) метод сравнения, или нулевой метод, служащий основой действия приборов сравнения: мостов, компенсаторов.

По роду измеряемой величины различают электроизмерительные приборы: для измерения напряжения (вольтметры, милливольтметры, гальванометры); для измерения тока (амперметры, миллиамперметры, гальванометры); для измерения мощности (ваттметры); для измерения энергии (электрические счетчики); для измерения угла сдвига фаз (фазометры); для измерения частоты тока (частотомеры); для измерения сопротивлений (омметры), и т.д.

В зависимости от рода измеряемого тока различают приборы постоянного, переменного однофазного и переменного трехфазного тока.

По степени точности приборы подразделяются на следующие классы точности: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; и 4,0. Класс точности не должен превышать приведенной относительной погрешности прибора, которая определяется по формуле:

где А — показания поверяемого прибора; А0 — показания образцового прибора; Amax — максимальное значение измеряемой величины (предел измерения).
В зависимости от принципа действия различают системы электроизмерительных приборов. Приборы одной системы обладают одинаковым принципом действия. Существуют следующие основные системы приборов: магнитоэлектрическая, электромагнитная, электродинамическая, индукционная.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8852 — | 7556 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Читайте также:  Крупнейшая солнечная электростанция в россии
Оценить статью
Добавить комментарий