Мощность потока солнечных лучей

Мощность потока солнечных лучей

Содержание

Основные характеристики солнечного света

Освещенность (усредненная мощность солнечного излучения, измеренная в верхней атмосфере Земли перпендикулярно солнечным лучам): 1366 Вт на квадратный метр (или 1361, в соответствии с НАСА).

«Стандартное солнце» (пиковая мощность излучения, которая достигает поверхности Земли на уровне моря в районе экватора в безоблачный полдень): 1000 Вт/м 2 , или 1 кВт/м 2 .

Это значение обычно используется в характеристиках фотоэлектрических систем. Здесь и далее все цифры приведены для поверхностей, оптимально расположенных относительно солнца (перпендикулярно лучам) в соответствии с широтой. Для горизонтальных поверхностей вы получите меньше солнечного света: чем дальше от экватора, тем ниже плотность солнечной энергии.

Инсоляция (среднее количество часов «стандартного солнца» на протяжении суток): от 4–5 солнечных часов на северо-востоке США до 5–7 часов на юго-западе. Инсоляция часто указывается в кВт·ч, численно вытекая из значения «стандартного солнца» в 1 кВт.

Общее количество излучаемой энергии солнечного света в день на м 2 на уровне моря: (энергия за день) = 1 кВт·ч × (инсоляция в часах). Учитывая среднюю инсоляцию в США, равную 5 солнечным часам, это значение обычно равно 5 кВт·ч/м 2 .

Солнечная мощность, усредненная за весь день: Wattsaverag = (энергия за день)/24. Для инсоляции в 5 кВт·ч мощность, усредненная за весь день – 5000 Вт/24 = 208 Вт/м 2 . Обратите внимание, что только небольшая часть этой энергии может быть преобразована в электричество из-за не очень высокой эффективности фотоэлектрических систем.

Типовые характеристики фотоэлектрических систем

Средний КПД распространенных коммерческих солнечных панелей: на кристаллическом кремнии (CSI) – 12–17%; тонкопленочных (из аморфного кремния и других материалов) – 8–12%.

Мощность, генерируемая панелью в один квадратный метр: PVwatts = (солнечная мощность) × (средний КПД), где КПД преобразуется в десятичное число.

Пиковая мощность в безоблачный полдень: PVwatts-peak = 1000 Вт × КПД. Как правило, пиковая мощность равна 120170 Вт/м 2 для CSi и 80–120 Вт/м 2 для тонких пленок (TF).

Суммарное усредненное количество энергии, производимой панелью в один м 2 за день: PVday = PVwatts-peak × (Инсоляция в часах). Для инсоляции в 5 часов это значение будет 0.6–0.85 кВт/м 2 для CSi и 0.4–0.6 кВт/м 2 для TF.

Выработанная энергия панели, усредненная за весь день: PVwatts-average = PVday/24. Это примерно 25–35 Вт/м 2 для CSi и 17–25 Вт/м 2 для TF.

Общая энергия, генерируемая фотоэлектрическим модулем на м 2 в год: PVyear = (полная энергия в день) × 365, которая будет равна примерно 219–310 кВт·ч для CSi и 146–219 кВт·ч для TF. Обратите внимание, что инверторы имеют эффективность 95–97%, поэтому фактической электроэнергии будет на 5% меньше.

Ожидаемая стоимость электроэнергии с одного м 2 , сэкономленной за год: Saving = PVyear × 0.95 × (стоимость кВт·ч), где 0.95 – КПД преобразователя и потери в проводах.

В среднем в США стоимость одного кВт·ч электроэнергии равна $0.12, это дает в год $24–35 для CSi и $17–24 для тонких пленок. Таким образом, в лучшем случае, можно будет сэкономить $35 в год на 1 м 2 панели. Эта цифра относится к высокоэффективной системе с номинальной мощностью 170 Вт/м 2 . Учитывая тот факт, что в настоящее время стоимость типичной фотоэлектрической системы составляет $8000 на 1000 Вт, такие установки будут стоить 170/1000 × $8,000 = $1,360 за м 2 . Это означает, что в нашем примере, гипотетический срок окупаемости будет 1360/35 = 39 лет. Никакое оборудование не сможет так долго функционировать. Скидки и кредиты могут сократить это время более чем на половину, однако, все равно, для среднестатистического домашнего хозяйства установка солнечной панели, скорее всего, не окупится. Конечно, это всего лишь пример. В районах с другой инсоляцией и другими затратами на установку срок окупаемости может быть выше или ниже.

Краткая информация о Солнце

  • Диаметр: 1,392,000 км;
  • Масса: 1,989,100 × 10 24 кг;
  • Температура на поверхности:

5,700 °С;

  • Среднее расстояние от Земли до Солнца: 150 млн. км;
  • Состав по массе: 74% водород, 25% гелий, 1% другие элементы;
  • Яркость (общее количество энергии, излучаемой во всех направлениях): 3.85 × 10 26 Вт (
  • 385 млрд. МВт);

  • Плотность мощности излучения на поверхности Солнца: 63,300 кВт на квадратный метр.
  • Перевод: Андрей Гаврилюк по заказу РадиоЛоцман

    Опубликовано 07 Сен 2015
    Рубрика: О жизни | 19 комментариев

    Слияние атомов водорода и рождение атомов гелия, происходящее в недрах звезд из-за невероятно огромного давления, вызванного суперсилами гравитации, сопровождается сверхмощным выделением энергии. Идет термоядерная реакция и на ближайшей к нам звезде по имени Солнце.

    Солнечная энергия (точнее — крохотная доля от всей, излученной Солнцем в пространство энергии) достигает Земли и обеспечивает существование жизни на нашей планете в том виде, в каком мы ее знаем.

    Интенсивность излучения Солнца «на входе» в атмосферу Земли составляет 1,367 КВт/м 2 .

    Атмосфера планеты поглощает часть потока солнечной энергии. На разных широтах, в разное время года, в разное время суток, на разной высоте над уровнем моря и при различной облачности мощность солнечного изучения, приходящаяся на один квадратный метр поверхности перпендикулярной лучам составляет

    от 0 КВт/м 2 до 1,0 КВт/м 2 .

    Почему солнечное излучение имеет различную интенсивность можно понять, рассмотрев рисунок ниже.

    В различных условиях лучам Солнца приходится преодолевать до поверхности Земли через атмосферу разные расстояния! Чем длиннее путь лучей Солнца через атмосферу, тем больше поглощение, тем меньше энергии дойдет до поверхности, до точки А.

    1,0 КВт/м 2 – это максимум интенсивности в ясную погоду на уровне моря в истинный астрономический полдень на экваторе в дни весеннего (

    20 марта) и осеннего (

    22 сентября) равноденствий!

    Это означает, что никакое устройство, созданное человеком для преобразования солнечной энергии в тепловую или электрическую, имеющее рабочую площадь 1,0 м 2 никогда не выдаст мощность более 1,0 КВт!

    В средних широтах России солнечная энергия имеет интенсивность потока летом в ясный полдень – до 0,8 КВт/м 2 , зимой – всего лишь до 0,3 КВт/м 2 .

    По справочным таблицам (смотри ссылки в конце статьи) в среднем за год количество солнечной энергии, падающей на горизонтальную площадку площадью 1м 2 :

    На момент написания статьи, к примеру, в Омске цена 1 КВт*ч электроэнергии составляла 3,32 руб. для населения. Образно выражаясь, можно сказать, что Солнце «высыпает» в год в Омске на каждый квадратный метр 4183,20 руб. (11,46 руб. ежедневно) в переводе на стоимость электроэнергии.

    Задача и проблема – собрать это богатство.

    Солнечная электроэнергия.

    Для преобразования энергии Солнца в электроэнергию на сегодняшний день наиболее эффективными являются кремниевые фотоэлектрические батареи. Но их КПД низок и по факту не превышает 14%.

    Таким образом, панель площадью 1,0 м 2 способна выдать на широте Москвы максимальную мощность порядка 0,11 КВт. И не верьте недобросовестным продавцам, завышающим показатели мощности!

    Низкий КПД по большому счету ни о чем не говорит (ездим же мы на автомобилях, двигатели которых имеют КПД=10%). Ставь панель большей площади – и всё. Однако высокая стоимость полного комплекта солнечной электростанции (с панелями, аккумуляторами, автоматикой, преобразователями

    1100 $/КВт) продолжает являться в России сдерживающим широкое распространение солнечных панелей фактором. Конечно, в местах, где другим способом получить электроэнергию невозможно или очень сложно и дорого (космос, кемпинг, дом лесника, не электрифицированный поселок), солнечная электростанция является хорошим решением проблемы.

    К 2030 году прогнозируемая мощность всех солнечных фотоэлектрических преобразователей в мире превысит 200 ГВт. При этом стоимость произведенной электрической энергии предполагается 0,10…0,15 $/КВт*ч.

    Солнечная тепловая энергия.

    Очень популярной последние десятилетия стала тема получения тепловой энергии для горячего водоснабжения и отопления помещений от Солнца. Сотни компаний по всему миру предлагают свои разработки солнечных коллекторов, тысячи энтузиастов изготавливают разнообразные варианты устройств в домашних мастерских.

    Одними из перспективных на сегодняшний день, возможно, видятся вакуумированные трубчатые коллекторы, у которых КПД достигает 90% (по заявлениям производителей и продавцов). Холодный воздух вентилятором забирается из помещения и по теплоизолированной трубе поступает в коллектор. Нагретый в результате теплообмена воздух возвращается по такой же трубе обратно в помещение. Солнечная энергия по очень простой и эффективной схеме преобразуется в тепловую! Установка не боится морозов, потому что замерзать в ней нечему.

    Рассмотрим подробнее модель солнечного коллектора китайской компании ZN-ENERGY (www.pcmworld.com, подключисолнце.рф). Результаты практических испытаний любезно предоставил Алексей Пыкин из города Улан-Удэ.

    Алексей установил наклонно с ориентацией на юг два коллектора марки ZN-20D58-1800 на крыше сарайчика, присоединил к ним подводящую и отводящую воздух трубы, включил в схему вентилятор, подключил прибор, записывающий температуры входящего в коллектор воздуха и выходящего и замерил скорость воздушного потока на выходе из отводящей трубы в помещение.

    Габаритно-массовые параметры одного коллектора:

    Высота – 2030 мм

    Ширина – 1550 мм

    Толщина – 180 мм

    Оба коллектора собраны из 20 стеклянных вакуумных трубок длиной 1800 мм.

    Между наружной трубкой Ø57 мм и первой внутренней трубкой Ø47 мм откачан воздух и создан вакуум для обеспечения высокого уровня теплоизоляции.

    Поверхность трубки Ø47 мм имеет черное покрытие с очень большим коэффициентом поглощения (>0,9) солнечной энергии. Именно эта поверхность, разогреваясь под лучами Солнца, отдает всю полученную энергию внутрь трубки Ø47 мм, проходящему через нее воздуху и аккумулятору тепла – РСМ-цилиндру! Передаче тепла наружу в окружающее пространство препятствует вакуум.

    РСМ-цилиндр – это еще одна внутренняя трубка с веществом, накапливающим и затем отдающим тепло за счет фазового перехода из одного агрегатного состояния в другое. По-простому — это «высокоэффективные камни в печке в бане».

    Теоретическая мощность установки.

    1. Эффективная площадь поверхности двух коллекторов марки ZN-20D58-1800

    A =0,047*1,8*20*2=3,384 м 2

    Те, кто считают площадь иначе, как поверхность полуцилиндра, или лукавят, или заблуждаются. В подтверждение своей правоты кроме здравого смысла в понимании процесса могу добавить, что известная компания Viessmann (Германия) площадь своих коллекторов на трубках считает по вышеприведенной формуле.

    2. Максимальный заявляемый разработчиками коэффициент полезного действия коллекторов

    КПД =0,9

    3. Максимальная интенсивность потока в июне-июле в ясный полдень на широте г. Улан-Удэ

    Ie =0,8 КВт/м 2

    4. Максимальная мощность, которую могут развить два коллектора, установленные плоскостями перпендикулярно лучам Солнца

    NΣтеор = Ie * A * КПД =0,8*3,384*0,9=2,436 КВт

    5. Максимальная мощность, которую может развить одна трубка

    Практическая мощность установки.

    Выполним расчет в Excel мощности установки по исходным данным, присланным Алексеем.

    О цветах ячеек листа Excel, применяемых в статьях этого блога, можно посмотреть на странице « О блоге ».

    Расчет в Excel выполняется по следующим формулам:

    7. V =π* D 2 /4* vср

    8. G = V * ρ

    9. N = G * c *( t2 — t1 )

    11. Q = N * τ

    12. mд = Q / qд

    Выводы.

    Установка Алексея в июньский солнечный полдень забирает из помещения воздух температурой 25 °С и, прогоняя его через два коллектора, выдает обратно в помещение нагретым до 138 °С!

    Рассчитанная через количество нагретого воздуха мощность, достигаемая в этот момент времени – 2,307 КВт. Это 95% от рассчитанной теоретической мощности.

    В нижней части таблицы можно определить количество тепловой энергии, которое выработает установка за заданное время, работая с вычисленной мощностью.

    В самом низу таблицы я привел для справки расчет массы дров, которую необходимо сжечь для получения такого же количества энергии.

    Для расчета суточного производства тепловой энергии следует проинтегрировать функцию мощности по времени.

    Q =∫ N ( τ ) d τ

    О том, как это делать рассказано в предыдущей статье на блоге.

    Итоги.

    В этой небольшой обзорной статье не ставилась цель подробно расписать все возможные варианты преобразования солнечной энергии в другие виды. Тем более не хотелось углубляться в разнообразие теплофизических аспектов и конструктивных решений конкретных моделей солнечных панелей и коллекторов. Совсем не был затронут вопрос углов установки панелей и коллекторов…

    Главное, что хотелось донести:

    1. Более 1,0 КВт мощности с панели или коллектора с рабочей площадью 1,0 м 2 не «снять»!

    2. Более 0,14 КВт современная фотоэлектрическая батарея площадью 1,0 м 2 пока не вырабатывает!

    3. Более 0,9 КВт солнечный коллектор с рабочей площадью 1,0 м 2 выдать сегодня не может и не сможет, наверное, никогда, если на Солнце что-нибудь не случиться! А если случится, то нам уже эта энергия не понадобится…

    4. РСМ-цилиндры накапливают тепло, которое не смог забрать продуваемый воздух и отдают его воздуху в моменты закрытия Солнца облаками и перед закатом. Увеличить мощность РСМ-цилиндры не могут. Они, как ресиверы в системах сжатого воздуха, сглаживают колебания выходной мощности и не более того.

    5. Если (с поправкой на оптимальный угол установки коллекторов) за год в г. Омске поступает от Солнца

    1500 КВт*ч/м 2 , то установка из двух коллекторов, рассмотренная в примере, сможет выдать тепловой энергии около 4 300 КВт*ч.

    В переводе на стоимость электроэнергии мы получим в год тепловой энергии на 14276 руб. Комплект коллекторов стоит около 120000 руб. Срок окупаемости более 8 лет…

    В переводе на стоимость дров (1,50 руб./кг или 1000 руб./м 3 ) мы получим в год тепловой энергии на

    3000 руб. (если принять КПД печи равным 50%). Срок окупаемости – 40 лет!

    И это еще без учета затрат электроэнергии на вентилятор!

    Не знаю, сколько прослужат коллектора, но жизненный опыт подсказывает, что град размером с куриное яйцо бывает у нас каждые 3…5 лет…

    Однако, стоит отметить, что солнечная энергия – экологически чистый вид энергии. Расширяя ее применение, мы сохраняем нашу среду обитания. И стоит помнить, что расходуя всего 1 КВт*ч энергии, можно испечь 100 булок хлеба или выткать 10 м 2 ткани!

    В заключении приведу несколько ссылок на качественные и просто интересные материалы по затронутой тематике:

    Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

    Ссылка на скачивание файла: solnechnaya-energiya (xls 20,5KB).

    Комментарии к статье, уважаемые читатели, пишите в блоке, расположенном ниже. Не стесняйтесь высказать свое мнение!

    Тепловой поток солнечного излучения. Практические величины для расчетов. Пиковая нагрузка теплового потока солнечного излучения на прозрачное остекление различной площади.

    На практике слишком часто недооценивается вклад солнечного излучения в тепловой балланс помещения. Проблема состоит не столько в том, что слишком велик средний вклад теплового излучения (около 350 Вт/м 2 = 84 кал/(с*м 2 ) = 0.35 кВт*часов/(час *м 2 ) для основной части территории РФ в течение светового дня), сколько в пиковой величине потока солнечного излучения.

    Для начала приведем характерные величины потоков солнечного излучения для полюсов и экватора Земли:

    Экватор: 420 Вт/м2 — среднее значение, а 1000 Вт/м2 пиковое значение
    Полюса: 170 Вт/м2 — среднее значение, а 400 Вт/м2 пиковое значение

    Как ни странно, но на большей части территории РФ кроме побережья Северного Ледовитого океана пиковое значение солнечного излучения составляет около 900 Вт/м 2 = 215 кал/(с*м 2 ) = 0.9 кВт*часов/(час *м 2 ). Или около 1 киловаттчаса (кВт*ч) в час через стандартное окно на солнечной стороне дома в солнечный день.

    Чем тепловой поток в облачный день отличется от теплового потока в солнечный день? Он ниже примерно в 2 раза.

    Помогают ли шторы защитить помещение от солнечного излучения? Весьма незначительно, поскольку тепло, выделяющееся на шторах, остается внутри помещения. Чем ближе шторы находятся к стеклу, тем большая часть тепла отражается на улицу. Идеально — непрозрачные белые глянцевые шторы вплотную к стеклу (см. коэффициенты поглощения солнечного излучения). А еще лучше — ставни.

    Читайте также:  Лампочка в темной комнате
    Оценить статью
    Добавить комментарий