Модуль эдс самоиндукции формула

Модуль эдс самоиндукции формула

Содержание

В этой публикации рассмотрены основные термины, законы и методики вычисления ЭДС магнитной индукции. С помощью представленных ниже материалов можно самостоятельно определить силу тока во взаимосвязанных контурах, изменение напряжения в типовых трансформаторах. Эти сведения пригодятся для решения различных электротехнических задач.

Магнитный поток

Известно, что пропускание тока через проводник сопровождается формированием электромагнитного поля. На этом принципе основана работа динамиков, запорных устройств, приводов реле, других приспособлений. Изменением параметров источника питания получают необходимые силовые усилия для перемещения (удержания) совмещенных деталей, обладающих ферромагнитными свойствами.

Однако действительно и обратное утверждение. Если между полюсами постоянного магнита перемещать рамку из проводящего материала по соответствующему замкнутому контуру, начнется перемещение заряженных частиц. Подключив соответствующие приборы, можно регистрировать изменение тока (напряжения). В ходе элементарного эксперимента можно выяснить увеличение эффекта в следующих ситуациях:

  • перпендикулярное расположение проводника/силовых линий;
  • ускорение перемещений.

На картинке выше показано, как определять направление тока в проводнике с помощью простого правила.

Что такое ЭДС индукции

Отмеченное выше перемещение зарядов создает разницу потенциалов, если контур разомкнут. Представленная формула показывает, как именно будет зависеть ЭДС от основных параметров:

  • векторного выражения магнитного потока (B);
  • длины (l) и скорости перемещения (v) контрольного проводника;
  • угла (α) между векторами движения/ индукции.

Аналогичный результат можно получить, если система составлена из стационарной проводящей цепи, на которую воздействует перемещающееся магнитное поле. Замкнув контур, создают подходящие условия для перемещения зарядов. Если использовать много проводников (катушку) или двигаться быстрее, увеличится сила тока. Представленные принципы с успехом применяют для преобразования механических сил в электроэнергию.

Обозначение и единицы измерения

ЭДС в формулах обозначают вектором Е. Подразумевается напряженность, которую создают сторонние силы. Соответствующим образом эту величину можно оценивать по разнице потенциалов. По действующим международным стандартам (СИ), единица измерения – один вольт. Большие и малые значения указывают с применением кратных приставок: «микро», «кило» и др.

Законы Фарадея и Ленца

Если рассматривается электромагнитная индукция, формулы этих ученых помогают уточнить взаимное влияние значимых параметров системы. Определение Фарадея позволяет уточнить зависимость ЭДС (E – среднее значение) от изменений магнитного потока (ΔF) и времени (Δt):

Промежуточные выводы:

  • ток увеличивается, если за единицу времени проводник пересекает большее количество силовых магнитных линий;
  • «-» в формуле помогает учитывать взаимные связи между полярностью Е, скоростью перемещения рамки, направленностью вектора индукции.

Ленц обосновал зависимость ЭДС от любых изменений магнитного потока. При замыкании контура катушки создаются условия для движения зарядов. В таком варианте конструкция преобразуется в типичный соленоид. Рядом с ним образуется соответствующее электромагнитное поле.

Этот ученый обосновал важную особенность индукционной ЭДС. Сформированное катушкой поле препятствует изменению стороннего потока.

Движение провода в магнитном поле

Как показано в первой формуле (Е = В * l * v * sinα), амплитуда электродвижущей силы в значительной мере зависит от параметров проводника. Точнее – влияние оказывает количество силовых линий на единицу длины рабочей области цепи. Аналогичный вывод можно сделать с учетом изменения скорости перемещения. Следует не забывать о взаимном расположении отмеченных векторных величин (sinα).

Важно! Перемещение проводника вдоль силовых линий не провоцирует индуцирование электродвижущей силы.

Вращающаяся катушка

Обеспечить оптимальное расположение функциональных компонентов при одновременном перемещении сложно, если применять представленный в примере прямой провод. Однако согнув рамку, можно получить простейший генератор электроэнергии. Максимальный эффект обеспечивает увеличение количества проводников на единицу рабочего объема. Соответствующая отмеченным параметрам конструкция – катушка, типичный элемент современного генератора переменного тока.

Для оценки магнитного потока (F) можно применить формулу:

где S – площадь рассматриваемой рабочей поверхности.

Пояснение. При равномерном вращении ротора происходит соответствующее циклическое синусоидальное изменение магнитного потока. Аналогичным образом меняется амплитуда выходного сигнала. Из рисунка понятно, что определенное значение имеет величина зазора между основными функциональными компонентами конструкции.

ЭДС самоиндукции

Если через катушку пропускать переменный ток, рядом будет формироваться электромагнитное поле с аналогичными (равномерно изменяющимися) силовыми характеристиками. Оно создает переменный синусоидальный магнитный поток, который, в свою очередь, провоцирует перемещение зарядов и образование электродвижущей силы. Данный процесс называют самоиндукцией.

С учетом рассмотренных базовых принципов несложно определить, что F = L * l. Значение L (в генри) определяет индуктивные характеристики катушки. Этот параметр зависит от количества витков на единицу длины (l) и площади поперечного сечения проводника.

Взаимоиндукция

Если собрать модуль из двух катушек, в определенных условиях можно наблюдать явление взаимной индукции. Элементарное измерение покажет, что по мере увеличения расстояния между элементами уменьшается магнитный поток. Обратное явление наблюдается по мере уменьшения зазора.

Чтобы находить подходящие компоненты при создании электрических схем, необходимо изучить тематические вычисления:

  • можно взять для примера катушки с разным количеством витков (n1 и n2);
  • взаимоиндукция (M2) при прохождении по первому контуру токаI1 будет вычислена следующим образом:
  • после преобразования этого выражения определяют значение магнитного потока:
  • для расчета эдс электромагнитной индукции формула подойдет из описания базовых принципов:

E2 = – n2 * ΔF/ Δt = M 2 * ΔI1/ Δt

При необходимости можно найти по аналогичному алгоритму соотношение для первой катушки:

E1 = – n1 * ΔF/ Δt = M 1 * ΔI2/ Δt.

Следует обратить внимание, что в этом случае значение имеет сила (I2) во втором рабочем контуре.

Совместное влияние (взаимоиндукцию – М) рассчитывают по формуле:

Специальным коэффициентом (K) учитывают действительную силу связи между катушками.

Где используются разные виды ЭДС

Перемещение проводника в магнитном поле применяют для генерации электроэнергии. Вращение ротора обеспечивают за счет разницы уровней жидкости (ГЭС), энергией ветра, приливами, топливными двигателями.

Различное количество витков (взаимоиндукцию) применяют для изменения нужным образом напряжения во вторичной обмотке трансформатора. В таких конструкциях взаимную связь увеличивают с помощью ферромагнитного сердечника. Магнитную индукцию применяют для возникновения мощной отталкивающей силы при создании ультрасовременных транспортных магистралей. Созданная левитация позволяет исключить силу трения, значительно увеличить скорость передвижения поезда.

Видео

При изменении потока, сцепленного с замкнутым проводящим контуром, через площадь, ограниченную данным контуром, в нем появляется вихревое электрическое поле и течет индукционный ток — явление электромагнитной самоиндукции.

Модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывают по формуле

〈 | ℰ i s | 〉 = | Δ Ф s | Δ t ,

где ΔФ s — изменение магнитного потока, сцепленного с контуром, за время Δ t .

Если сила тока в контуре изменяется с течением времени I = I ( t ), то

  • изменение потока, сцепленного с контуром, определяется формулой

где L — индуктивность контура; Δ I — изменение силы тока в контуре за время Δ t ;

  • модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывается по формуле

〈 | ℰ i s | 〉 = L | Δ I | Δ t ,

где Δ I /Δ t — скорость изменения силы тока в контуре.

Если индуктивность контура изменяется с течением времени L = L ( t ), то

  • изменение потока, сцепленного с контуром, определяется формулой

где Δ L — изменение индуктивности контура за время Δ t ; I — сила тока в контуре;

  • модуль средней ЭДС самоиндукции за определенный промежуток времени рассчитывается по формуле

〈 | ℰ i s | 〉 = I | Δ L | Δ t .

Пример 16. В замкнутом проводящем контуре с индуктивностью 20 мГн течет ток силой 1,4 А. Найти среднее значение ЭДС самоиндукции, возникающей в контуре, при равномерном уменьшении в нем силы тока на 20 % за 80 мс.

Решение . Появление ЭДС самоиндукции в контуре вызвано изменением потока, сцепленного с контуром, при изменении в нем силы тока.

Поток, сцепленный с контуром, определяется формулами:

где L — индуктивность контура, L = 20 мГн; I 1 — первоначальная сила тока в контуре, I 1 = 1,4 А;

где I 2 — конечная сила тока в контуре.

Изменение потока, сцепленного с контуром, определяется разностью:

Δ Ф s = Ф s 2 − Ф s 1 = L I 2 − L I 1 = L ( I 2 − I 1 ) ,

где I 2 = 0,8 I 1 .

Среднее значение ЭДС самоиндукции, возникающей в контуре, при изменении в нем силы тока:

〈 ℰ s i 〉 = | Δ Ф s Δ t | = | L ( I 2 − I 1 ) Δ t | = | − 0,2 L I 1 Δ t | = 0,2 L I 1 Δ t ,

где ∆ t — интервал времени, за который происходит уменьшение силы тока, ∆ t = 80 мс.

Расчет дает значение:

〈 ℰ s i 〉 = 0,2 ⋅ 20 ⋅ 10 − 3 ⋅ 1,4 80 ⋅ 10 − 3 = 70 ⋅ 10 − 3 с = 70 мВ.

При изменении силы тока в контуре в нем возникает ЭДС самоиндукции, среднее значение которой равно 70 мВ.

Согласно закону Фарадея ℰis = – . Если Ф = LI, то ℰis = = – . При условии, что индуктивность контура в процессе изменения тока не меняется (т.е. не меняются геометрические размеры контура и магнитные свойства среды), то

is = – . (13.2)

Из этой формулы видно, что если индуктивность катушки L достаточно велика, а время изменения тока мало, то величина ℰis может достигнуть большой величины и превысить ЭДС источника тока при размыкании цепи. Именно этот эффект мы наблюдали в опыте 1.

Из формулы (13.2) можно выразить L:

т.е. индуктивность имеет еще один физический смысл: она численно равна ЭДС самоиндукции при скорости изменения тока через контур 1 А в 1 с.

Читатель: Но тогда получится, что размерность индуктивности

[L] = [ℰ] = . А раньше мы получили, что [L] =
[I]×[t]

Автор: Вспомним, что ℰi = – , отсюда [Ф] = [ℰ][t], т.е. Вб = В×с. Так что и – это одно и то же:

[L] = Гн = .

СТОП! Решите самостоятельно: А3, А4, В3–В5, С1, С2.

Задача 13.2. Какова индуктивность катушки с железным сердечником, если за время Dt = 0,50 с ток в цепи изменился от I1 = = 10,0 А до I2 = 5,0 А, а возникшая при этом ЭДС самоиндукции по модулю равна |ℰis| = 25 В?

Dt = 0,50 с I1 = 10,0 А I2 = 5,0 А |ℰis| = 25 В Решение. Воспользуемся формулой (13.2). Из нее следует, что |ℰis| = L = ℰis = Гн.
L = ?

Ответ: L = ℰis » 2,5 Гн.

СТОП! Решите самостоятельно: А5, А6, В6.

Читатель: А какой смысл имеет знак минус в формуле (13.2)?

Рис. 13.6

Автор: Рассмотрим какой-либо проводящий контур, по которому течет ток. Выберем направление обхода контура – по или против часовой стрелки (рис. 13.6). Вспомним: если направление тока совпадает с выбранным направлением обхода, то сила тока считается положительной, а если нет – отрицательной.

Изменение тока DI = Iкон – Iнач – также величина алгебраическая (отрицательная или положительная). ЭДС самоиндукции – это работа, совершаемая вихревым полем при перемещении единичного положительного заряда по контуру вдоль направления обхода контура. Если напряженность вихревого поля направлена вдоль направления обхода контура, то эта работа положительна, а если против – отрицательна. Таким образом, знак минус в формуле (13.2) показывает, что величины DI и ℰis всегда имеют разные знаки.

Покажем это на примерах (рис. 13.7):

а) I > 0 и DI > 0, значит, ℰis 0 и DI 0, т.е. ЭДС самоиндукции «включена» вдоль направления обхода;

в) I 0, т.е. модуль тока возрастает, а сам ток становится все «более отрицательным». Значит, DI 0, т.е. ЭДС самоиндукции «включена» вдоль направления обхода;

г) I 0, тогда ℰis

а б Рис. 13.8 Решение. Так как оба тока возрастают, то в обеих катушках возникают ЭДС самоиндукции ℰis1
L1 = 0,02 Гн L2 = 0,005 Гн I1 = 0,1 А I2 = 0,2 А DI1/Dt = 10 А/с DI2/Dt = 20 А/с
R = ?

|ℰis1| = ; |ℰis2| = .

Выберем направление обхода по часовой стрелке (см. рис. 13.8,б) и применим второе правило Кирхгофа

R = |ℰis2| – |ℰis1| / (I1 – I2) = =

1 Ом.

Ответ: R = » 1 Ом.

СТОП! Решите самостоятельно: В7, В8, С3.

Задача 13.4. Катушка сопротивлением R = 20 Ом и индуктивностью L = 0,010 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на DФ = = 0,001 Вб, ток в катушке возрос на DI = 0,050 А. Какой заряд прошел за это время по катушке?

R = 20 Ом L = 0,010 Гн DФ = 0,0010 Вб DI = 0,050 А Решение. Внешнее переменное магнитное поле создало в катушке ЭДС индукции |ℰi| = . Благодаря этой ЭДС в катушке стал увеличиваться ток, а из-за этого в катушке возникла ЭДС самоин-
q = ?
Рис. 13.9

дукции |ℰis| = . Причем ℰis «включилась» навстречу ℰi, так как ток в цепи возрастал (рис. 13.9).

Возьмем направление обхода контура по часовой стрелке. Тогда согласно второму правилу Кирхгофа получим:

I = (|ℰi| – |ℰis|)/R = .

Заряд q, прошедший по катушке за время Dt, равна

q = IDt =

мкКл.

Ответ: 25 мкКл.

СТОП! Решите самостоятельно: В9, В10, С4.

Задача 13.5. Катушка с индуктивностью L и электрическим сопротивлением R подключена через ключ к источнику тока с ЭДС ℰ. В момент t = 0 ключ замыкают. Как изменяется со временем сила тока I в цепи сразу же после замыкания ключа? Через длительное время после замыкания? Оцените характерное время t возрастания тока в такой цепи. Внутренним сопротивлением источника тока можно пренебречь.

R L Решение. ЭДС самоиндукции ℰis = – , поэтому согласно закону Ома для полной цепи IR = ℰ + ℰis = ℰ – (рис. 13.10, а). Перепишем это соотношение в виде = ℰ – IR. (1)
I(t) = ? t = ?

Рис. 13.10

Рис. 13.11

Сразу же после замыкания ключа I = 0, поэтому можно считать » ℰ/L, т.е. ток возрастает с постоянной скоростью (I = (ℰ/L)t;рис. 13.11).

При увеличении тока правая часть в уравнении (1) уменьшается, следовательно, уменьшается и скорость возрастания тока. Через достаточно длительное время (о том, каким оно должна быть, – чуть ниже) правая часть уравнения (1) становится пренебрежимо малой. Это означает, что ток стремится к постоянной величине I =/R (см. рис. 13.11).

«Характерное» время t для рассматриваемой системы можно определить, оценив, когда слагаемое IR станет сравнимо по величине с ℰ. Воспользовавшись для оценки зависимостью I = (ℰ/L)t,получаем (ℰ/L)tR » ℰ Þ t » L/R.

Точное значение тока в момент времени t можно найти, решив дифференциальное уравнение, к которому сводится уравнение (1):

при начальном условии I(0) = 0. «Угадаем» решение:

I(t) = (ℰ/R) .

Убедимся, что это действительно решение. В самом деле:

1) начальные условия выполняются:

I(0) = (ℰ/R) = (ℰ/R)(1 – 1) = 0;

2) левая часть уравнения (2) тождественна правой:

л.ч. LI¢ = L[(ℰ/R) ]¢ = (L/R) ;

п.ч. ℰ – IR = (ℰ/R) R = ℰ .

Поскольку в теории дифференциальных уравнений доказано, что уравнения данного типа имеют единственное решение, то других решений нет.

Ответ: t » L/R, I(t) = (ℰ/R) .

Читайте также:  Не помню выключила ли утюг
Оценить статью
Добавить комментарий