Метан низшая теплота сгорания

Метан низшая теплота сгорания

Содержание

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГАЗЫ ГОРЮЧИЕ ПРИРОДНЫЕ

РАСЧЕТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОТЫ СГОРАНИЯ,
ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ И ЧИСЛА ВОББЕ

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе

Combustible natural gases. Calculation method for determination of calorific value, specific gravity and Wobbe index

Взамен ГОСТ 22667-77

* Переиздание (май 1997 г.) с Изменением № 1, утвержденным в августе 1992 г. (ИУС 11-92)

Постановлением Государственного комитета СССР по стандартам от 23 августа 1982 г. № 3333 срок введения установлен

Ограничение срока действия снято по решению Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4-94)

Настоящий стандарт устанавливает методы расчета высшей и низшей теплоты сгорания, относительной плотности и числа Воббе сухих природных углеводородных газов по компонентному составу и известным физическим величинам чистых компонентов.

Стандарт не распространяется на газы, в которых фракция углеводородов С6+высшие превышает 0,1 %.

(Измененная редакция, Изм. № 1).

1.1 . Теплоту сгорания газа объемную (высшую или низшую) вычисляют по компонентному составу и теплоте сгорания отдельных компонентов газа.

1.2 . Компонентный состав газа определяют хроматографическим методом по ГОСТ 23781-87 методом абсолютной калибровки. Определяют все компоненты, объемная доля которых превышает 0,005 %, кроме метана, содержание которого рассчитывают по разности 100 % и суммы всех компонентов.

1.1 , 1.2. (Измененная редакция, Изм.1).

1.3 . Теплоту сгорания ( Q ) высшую ( Q в ) или низшую (Qн) в МДж/м 3 (ккал/м 3 ) вычисляют по формуле

где Qi — теплота сгорания газа (высшая или низшая) i-го компонента газа (обязательное приложение);

Сi — доля i-го компонента в газе.

2.1 . Относительную плотность ( d ) вычисляют по формуле

где di относительная плотность i-го компонента газа (обязательное приложение).

3.1 . Число Воббе ( W ) (низшее или высшее) в МДж/м 3 (ккал/м 3 ) вычисляют по формуле

4.1 . При расчетах допускается не учитывать теплоту сгорания и относительную плотность компонентов газа, значения которых менее 0,005 МДж/м 3 (1 ккал/м 3 ) и 0,0001 соответственно.

4.2 . Значение теплоты сгорания компонентов округляют до 0,005 МДж/м 3 (1 ккал/м 3 ), конечный результат округляют до 0,05 МДж/м 3 (10 ккал/м 3 ).

4.3 . Значение относительной плотности компонентов округляют до 0,0001, конечный результат — до 0,001 единиц относительной плотности.

4.4 . При записи результатов определения необходимо указывать температурные условия (20 или 0 °С).

Теплота сгорания газа, рассчитанная из последовательно выполненных двух анализов одного образца газа одним исполнителем, с использованием одного и того же метода и прибора, признается достоверной (с 95 %-ной доверительной вероятностью), если расхождение между ними не превышает 0,1 %.

Высшая и низшая теплота сгорания и относительная плотность * компонентов сухого природного газа при 0 °С и 101,325 кПа **

Химические реакции сопровождаются поглощением или выделением энергии, в частности тепла. реакции, сопровождающиеся поглощением тепла, а также образующиеся при этом соединения называются эндотермическими. При эндотермических реакциях нагрев реагирующих веществ необходим не только для возникновения реакции, но и в течение всего времени их протекания. Без нагревания извне эндотермическая реакция прекращается.

реакции, сопровождающиеся выделением тепла, а также образующиеся при этом соединения называются экзотермическими. Все реакции горения относятся к экзотермическим. Вследствие выделения тепла они, возникнув в одной точке, способны распространяться на всю массу реагирующих веществ.

Количество тепла, выделяемое при полном сгорании вещества и отнесенное к одному молю, единице массы (кг, г) или объема (м 3 ) горючего вещества называется теплотой сгорания. Теплоту сгорания можно вычислить по табличным данным, пользуясь законом Гесса. Русский химик Г.Г. Гесс в 1840 г. открыл закон, который является частным случаем закона сохранения энергии. Закон Гесса состоит в следующем: тепловой эффект химического превращения не зависит от пути, по которому реакция протекает, а зависит лишь от начального и конечного состояний системы при условии, что температура и давление (или объем) в начале и в конце реакции одинаковы.

Рассмотрим это на примере вычисления теплоты сгорания метана. Метан можно получить из 1 моля углерода и 2 молей водорода. При сжигании метана получаются 2 моля воды и 1 моля диоксида углерода.

Те же продукты образуются при сгорании водорода и углерода. При этих реакциях общее количество выделяющегося тепла равно 963,5 кДж.

Поскольку начальные и конечные продукты в обоих случаях одинаковы, их общие тепловые эффекты должны быть равны согласно закону Гесса, т.е.

Следовательно, теплота сгорания метана будет равна

Qгор = 963,5 — 74,8 = 888,7 кДж/моль.

Таким образом, теплота сгорания химического соединения (или их смеси) равна разности между суммой теплот образования продуктов сгорания и теплотой образования сгоревшего химического соединения (или веществ, составляющих горючую смесь). Следовательно, для определения теплоты сгорания химических соединений необходимо знать теплоту их образования и теплоту образования продуктов, получающихся после сгорания.

Ниже приведены значения теплот образования некоторых химических соединений:

Оксид углерода CO ………….

Диоксид углерода CO2 ………

Пример 1.5.Определить температуру сгорания этана, если теплота его образования Q1 = 88,4 кДж. Напишем уравнение горения этана.

Для определения Qгор необходимо знать теплоты образования продуктов сгорания. теплота образования диоксида углерода 396,9 кДж, а воды 286,6 кДж. Следовательно, Q будет равно

а теплота сгорания этана

Теплоту сгорания экспериментально определяют в калориметрической бомбе и газовом калориметре. Различают высшую и низшую теплоты сгорания. Высшей теплотой сгорания Qв называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м 3 горючего вещества при условии, что содержащийся в нем водород сгорает с образованием жидкой воды. Низшей теплотой сгорания Qн называют количество тепла, выделяемое при полном сгорании 1 кг или 1 м 3 горючего вещества при условии сгорания водорода до образования водяного пара и испарении влаги горючего вещества.

Высшую и низшую теплоты сгорания твердых и жидких горючих веществ можно определить по формулам Д.И. Менделеева:

где Qв, Qн — высшая и низшая теплоты сгорания, кДж/кг; W – содержание в горючем веществе углерода, водорода, кислорода, горючей серы и влаги, %.

Пример 1.6. Определить низшую температуру сгорания сернистого мазута, состоящего из 82,5 % С, 10,65 % Н, 3,1 % S и 0,5 % О; А (зола) = 0,25 %, W = 3 %. Используя уравнение Д.И. Менделеева (1.13), получаем

Низшую теплоту сгорания 1 м 3 сухих газов можно определить по уравнению

Низшая теплота сгорания некоторых горючих газов и жидкостей, полученная экспериментально, приведена ниже:

Низшая теплота сгорания некоторых горючих материалов, рассчитанная по их элементному составу, имеет следующие значения:

в конструкциях зданий…

Существует нижний предел теплоты сгорания, ниже которого вещества становятся не способными к горению в атмосфере воздуха.

Практически в процессе горения, особенно на пожарах, указанная в таблицах теплота сгорания полностью не выделяется, так как горение сопровождается недожогом. Известно, что нефтепродукты, а также бензол, толуол, ацетилен, т.е. вещества, богатые

углеродом, горят на пожарах с образованием значительного количества сажи. Сажа (углерод) способна гореть и выделять тепло. Если при горении она образуется, то, следовательно, горючее вещество выделяет тепла меньше того количества, которое указано в таблицах. Для веществ, богатых углеродом, коэффициент недожога h составляет 0,8 — 0,9. Следовательно, на пожарах при горении 1 кг резины может выделиться не 33520 кДж, а только 33520´0,8 = 26816 кДж.

Размер пожара обычно характеризуется площадью пожара. Количество тепла, выделяющееся с единицы площади пожара в единицу времени, называют теплотой пожара Qп

где υм – массовая скорость выгорания, кг/(м 2 ×с).

Удельная теплота пожара при внутренних пожарах характеризует тепловую нагрузку на конструкции зданий и сооружений и используется для расчета температуры пожара.

1.6. Температура горения

Выделяющееся в зоне горения тепло воспринимается продуктами сгорания, поэтому они нагреваются до высокой температуры. Та температура, до которой в процессе горения нагреваются продукты сгорания, называется температурой горения. Различают калориметрическую, теоретическую и действительную температуры горения. Действительная температура горения для условий пожара называется температурой пожара.

Под калориметрической температурой горения понимают ту температуру, до которой нагреваются продукты полного сгорания при следующих условиях:

1) всё выделяющееся при горении тепло расходуется на нагревание продуктов сгорания (потери тепла равны нулю);

2) начальные температуры воздуха и горючего вещества равны 0 0 С;

3) количество воздуха равно теоретически необходимому (a = 1);

4) происходит полное сгорание.

Калориметрическая температура горения зависит только от состава горючего вещества и не зависит от его количества.

Теоретическая температура, в отличие от калориметрической, характеризует горение с учетом эндотермического процесса диссоциации продуктов сгорания при высокой температуре

2СО2 2СО + О2 — 566,5 кДж.

2Н 2 О2Н 2 + О 2 — 478,5 кДж.

Практически диссоциацию продуктов сгорания необходимо учитывать только при температуре выше 1700 0 С. При диффузионном горении веществ в условиях пожара действительные температуры горения не достигают таких значений, поэтому для оценки условий пожара используют только калориметрическую температуру горения и температуру пожара. Различают температуру внутреннего и наружного пожара. Температура внутреннего пожара – это средняя температура дыма в помещении, где происходит пожар. Температура наружного пожара – температура пламени.

При расчете калориметрической температуры горения и температуры внутреннего пожара исходят из того, что низшая теплота сгорания Qн горючего вещества равна энергии qг, необходимой для нагревания продуктов сгорания от 0 0 С до калориметрической температуры горения

Величину qг назовем условно теплосодержанием продуктов сгорания

qг = ,

где — объем продуктов сгорания, м 3 /кг, С / — средняя объемная теплоемкость продуктов сгорания, кДж/(м 3 ?К), tг – температура горения, 0 С.

Поскольку продукты сгорания состоят из нескольких газообразных веществ, теплоемкость которых различна, суммарное теплосодержание их может быть выражено следующим образом:

,

где , , — объем компонентов продуктов сгорания , м 3 /кг; , , — теплоемкость компонентов продуктов сгорания (теплоемкость СО2 принимается для смеси СО2 и SО2), кДж/(м 3 ?К).

В действительности не вся теплота, выделяющаяся при горении в условиях пожара, расходуется на нагревание продуктов сгорания. Большая часть её расходуется на нагревание конструкций, подготовку горючих веществ к горению, нагревание избыточного воздуха и др. Поэтому температура внутреннего пожара значительно ниже калориметрической. Методика расчета температуры горения предполагает, что весь объем продуктов сгорания нагрет до одной и той же температуры. В действительности температура в различных точках очага горения неодинакова. Наиболее высокой является температура в области пространства, где протекает реакция горения, т.е. в зоне горения (пламени). Значительно ниже температура в местах, где находятся горючие пары и газы, выделившиеся из горящего вещества и продуктов сгорания, смешавшихся с избытком воздуха.

Чтобы судить о характере изменения температуры при пожаре в зависимости от различных условий горения, введено понятие среднеобъемной температуры пожара, под которой понимают среднее значение из величины температур, измеренных термометрами в различных точках внутреннего пожара. Эта температура определяется из опыта.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

В таблицах представлена массовая удельная теплота сгорания топлива (жидкого, твердого и газообразного) и некоторых других горючих материалов. Рассмотрено такое топливо, как: уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ и т. д.

При экзотермической реакции окисления топлива его химическая энергия переходит в тепловую с выделением определенного количества теплоты. Образующуюся тепловую энергию принято называть теплотой сгорания топлива. Она зависит от его химического состава, влажности и является основным показателем топлива. Теплота сгорания топлива, отнесенная на 1 кг массы или 1 м 3 объема образует массовую или объемную удельную теплоты сгорания.

Удельной теплотой сгорания топлива называется количество теплоты, выделяемое при полном сгорании единицы массы или объема твердого, жидкого или газообразного топлива. В Международной системе единиц эта величина измеряется в Дж/кг или Дж/м 3 .

Удельную теплоту сгорания топлива можно определить экспериментально или вычислить аналитически. Экспериментальные методы определения теплотворной способности основаны на практическом измерении количества теплоты, выделившейся при горении топлива, например в калориметре с термостатом и бомбой для сжигания. Для топлива с известным химическим составом удельную теплоту сгорания можно определить по формуле Менделеева.

Различают высшую и низшую удельные теплоты сгорания. Высшая теплота сгорания равна максимальному количеству теплоты, выделяемому при полном сгорании топлива, с учетом тепла затраченного на испарение влаги, содержащейся в топливе. Низшая теплота сгорания меньше значения высшей на величину теплоты конденсации водяного пара, который образуется из влаги топлива и водорода органической массы, превращающегося при горении в воду.

Для определения показателей качества топлива, а также в теплотехнических расчетах обычно используют низшую удельную теплоту сгорания, которая является важнейшей тепловой и эксплуатационной характеристикой топлива и приведена в таблицах ниже.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

В таблице представлены значения удельной теплоты сгорания сухого твердого топлива в размерности МДж/кг. Топливо в таблице расположено по названию в алфавитном порядке.

Наибольшей теплотворной способностью из рассмотренных твердых видов топлива обладает коксующийся уголь — его удельная теплота сгорания равна 36,3 МДж/кг (или в единицах СИ 36,3·10 6 Дж/кг). Кроме того высокая теплота сгорания свойственна каменному углю, антрациту, древесному углю и углю бурому.

К топливам с низкой энергоэффективностью можно отнести древесину, дрова, порох, фрезторф, горючие сланцы. Например, удельная теплота сгорания дров составляет 8,4…12,5, а пороха — всего 3,8 МДж/кг.

Удельная теплота сгорания твердого топлива (угля, дров, торфа, кокса)

Топливо Удельная теплота сгорания, МДж/кг
Антрацит 26,8…34,8
Древесные гранулы (пиллеты) 18,5
Дрова сухие 8,4…11
Дрова березовые сухие 12,5
Кокс газовый 26,9
Кокс доменный 30,4
Полукокс 27,3
Порох 3,8
Сланец 4,6…9
Сланцы горючие 5,9…15
Твердое ракетное топливо 4,2…10,5
Торф 16,3
Торф волокнистый 21,8
Торф фрезерный 8,1…10,5
Торфяная крошка 10,8
Уголь бурый 13…25
Уголь бурый (брикеты) 20,2
Уголь бурый (пыль) 25
Уголь донецкий 19,7…24
Уголь древесный 31,5…34,4
Уголь каменный 27
Уголь коксующийся 36,3
Уголь кузнецкий 22,8…25,1
Уголь челябинский 12,8
Уголь экибастузский 16,7
Фрезторф 8,1
Шлак 27,5

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Приведена таблица удельной теплоты сгорания жидкого топлива и некоторых других органических жидкостей. Следует отметить, что высоким тепловыделением при сгорании отличаются такие топлива, как: бензин, авиационный керосин, дизельное топливо и нефть.

Удельная теплота сгорания спирта и ацетона существенно ниже традиционных моторных топлив. Кроме того, относительно низким значением теплоты сгорания обладает жидкое ракетное топливо и этиленгликоль — при полном сгорании 1 кг этих углеводородов выделится количество теплоты, равное 9,2 и 13,3 МДж, соответственно.

Удельная теплота сгорания жидкого топлива (спирта, бензина, керосина, нефти)

Топливо Удельная теплота сгорания, МДж/кг
Ацетон 31,4
Бензин А-72 (ГОСТ 2084-67) 44,2
Бензин авиационный Б-70 (ГОСТ 1012-72) 44,1
Бензин АИ-93 (ГОСТ 2084-67) 43,6
Бензол 40,6
Дизельное топливо зимнее (ГОСТ 305-73) 43,6
Дизельное топливо летнее (ГОСТ 305-73) 43,4
Жидкое ракетное топливо (керосин + жидкий кислород) 9,2
Керосин авиационный 42,9
Керосин осветительный (ГОСТ 4753-68) 43,7
Ксилол 43,2
Мазут высокосернистый 39
Мазут малосернистый 40,5
Мазут низкосернистый 41,7
Мазут сернистый 39,6
Метиловый спирт (метанол) 21,1
н-Бутиловый спирт 36,8
Нефть 43,5…46
Нефть метановая 21,5
Толуол 40,9
Уайт-спирит (ГОСТ 313452) 44
Этиленгликоль 13,3
Этиловый спирт (этанол) 30,6

Удельная теплота сгорания газообразного топлива и горючих газов

Представлена таблица удельной теплоты сгорания газообразного топлива и некоторых других горючих газов в размерности МДж/кг. Из рассмотренных газов наибольшей массовой удельной теплотой сгорания отличается водород. При полном сгорании одного килограмма этого газа выделится 119,83 МДж тепла. Также высокой теплотворной способностью обладает такое топливо, как природный газ — удельная теплота сгорания природного газа равна 41…49 МДж/кг (у чистого метана 50 МДж/кг).

Удельная теплота сгорания газообразного топлива и горючих газов (водород, природный газ, метан)

Топливо Удельная теплота сгорания, МДж/кг
1-Бутен 45,3
Аммиак 18,6
Ацетилен 48,3
Водород 119,83
Водород, смесь с метаном (50% H2 и 50% CH4 по массе) 85
Водород, смесь с метаном и оксидом углерода (33-33-33% по массе) 60
Водород, смесь с оксидом углерода (50% H2 50% CO2 по массе) 65
Газ доменных печей 3
Газ коксовых печей 38,5
Газ сжиженный углеводородный СУГ (пропан-бутан) 43,8
Изобутан 45,6
Метан 50
н-Бутан 45,7
н-Гексан 45,1
н-Пентан 45,4
Попутный газ 40,6…43
Природный газ 41…49
Пропадиен 46,3
Пропан 46,3
Пропилен 45,8
Пропилен, смесь с водородом и окисью углерода (90%-9%-1% по массе) 52
Этан 47,5
Этилен 47,2

Удельная теплота сгорания некоторых горючих материалов

Приведена таблица удельной теплоты сгорания некоторых горючих материалов (стройматериалы, древесина, бумага, пластик, солома, резина и т. д.). Следует отметить материалы с высоким тепловыделением при сгорании. К таким материалам можно отнести: каучук различных типов, пенополистирол (пенопласт), полипропилен и полиэтилен.

Удельная теплота сгорания некоторых горючих материалов

Топливо Удельная теплота сгорания, МДж/кг
Бумага 17,6
Дерматин 21,5
Древесина (бруски влажностью 14 %) 13,8
Древесина в штабелях 16,6
Древесина дубовая 19,9
Древесина еловая 20,3
Древесина зеленая 6,3
Древесина сосновая 20,9
Капрон 31,1
Карболитовые изделия 26,9
Картон 16,5
Каучук бутадиенстирольный СКС-30АР 43,9
Каучук натуральный 44,8
Каучук синтетический 40,2
Каучук СКС 43,9
Каучук хлоропреновый 28
Линолеум поливинилхлоридный 14,3
Линолеум поливинилхлоридный двухслойный 17,9
Линолеум поливинилхлоридный на войлочной основе 16,6
Линолеум поливинилхлоридный на теплой основе 17,6
Линолеум поливинилхлоридный на тканевой основе 20,3
Линолеум резиновый (релин) 27,2
Парафин твердый 11,2
Пенопласт ПХВ-1 19,5
Пенопласт ФС-7 24,4
Пенопласт ФФ 31,4
Пенополистирол ПСБ-С 41,6
Пенополиуретан 24,3
Плита древесноволокнистая 20,9
Поливинилхлорид (ПВХ) 20,7
Поликарбонат 31
Полипропилен 45,7
Полистирол 39
Полиэтилен высокого давления 47
Полиэтилен низкого давления 46,7
Резина 33,5
Рубероид 29,5
Сажа канальная 28,3
Сено 16,7
Солома 17
Стекло органическое (оргстекло) 27,7
Текстолит 20,9
Толь 16
Тротил 15
Хлопок 17,5
Целлюлоза 16,4
Шерсть и шерстяные волокна 23,1
  1. Абрютин А. А. и др. Тепловой расчет котлов. Нормативный метод.
  2. ГОСТ 147-2013 Топливо твердое минеральное. Определение высшей теплоты сгорания и расчет низшей теплоты сгорания.
  3. ГОСТ 21261-91 Нефтепродукты. Метод определения высшей теплоты сгорания и вычисление низшей теплоты сгорания.
  4. ГОСТ 22667-82 Газы горючие природные. Расчетный метод определения теплоты сгорания, относительной плотности и числа Воббе.
  5. ГОСТ 31369-2008 Газ природный. Вычисление теплоты сгорания, плотности, относительной плотности и числа Воббе на основе компонентного состава.
  6. Земский Г. Т. Огнеопасные свойства неорганических и органических материалов: справочник М.: ВНИИПО, 2016 — 970 с.
Читайте также:  Монтаж светильников на тросах
Оценить статью
Добавить комментарий