Магнитоэлектрический измерительный механизм принцип работы

Магнитоэлектрический измерительный механизм принцип работы

Основными узлами магнитоэлектрического измерительного механизма являются магнитная система и подвижная часть. В зависимости от взаимного расположения постоянного магнита и катушки подвижной системы различают приборы с внешним магнитом и приборы с внутрирамочным магнитом.

Магнитная система прибора с внешним магнитом состоит из постоянного магнита, магнитопровода, полюсных наконечников и неподвижного сердечника. Магнит выполняется чаще всего из железоникельалюминиевых сплавов, и является источником магнитного потока. В воздушном зазоре располагается рамка. Она свободно охватывает сердечник и жёстко крепится на полуосях, поворот которых вызывает перемещение стрелки по шкале. Рамка имеет обмотку из медного или алюминиевого изолированного провода. Применяются бескаркасные и каркасные рамки.

В магнитоэлектрических приборах используется магнитоиндукционное успокоение, но без применения специальных успокоителей. При движении рамки в поле постоянного магнита момент успокоения создаётся за счёт взаимодействия вихревых токов, возникающих в цепи обмотки рамки, с полем магнита.

Чувствительность магнитоэлектрического прибора не зависит от угла отклонения и постоянна по всей шкале, т.е. магнитоэлектрические приборы имеют равномерную шкалу. Это позволяет выпускать их комбинированными и многопредельными. Они относятся к числу наиболее точных приборов.

Большим достоинством является высокая чувствительность и малое собственное потребление мощности, могут применяться с различного рода преобразователями переменного тока в постоянный и для измерений в цепях переменного тока. К недостаткам следует отнести несколько более сложную и дорогую конструкцию, невысокую перегрузочную способность.

Магнитоэлектрические амперметры и вольтметры

Измерительные механизмы магнитоэлектрических амперметров и вольтметров принципиально не различаются между собой. В зависимости от назначения прибора меняется его измерительная цепь. В амперметрах ИМ включается в цепь непосредственно или при помощи шунта. В вольтметрах последовательно с измерительным механизмом включается добавочное сопротивление, и прибор подключается к тем точкам схемы, между которыми необходимо измерить напряжение.

Читайте также:  Можно ли пересаживать взрослые туи

Расширение пределов измерения амперметра достигается включением шунта параллельно прибору.

Шунты изготавливаются из манганинаЮ имеющего температурный коэффициент сопротивления близкий к нулю.

Для расширения пределов измерения вольтметров применяют добавочные сопротивления (резисторы). Добавочные резисторы включаются в цепь последовательно с ИМ. Iим=. Добавочные резисторы изготавливаются из манганина и представляют собой обычно катушки из манганиновой проволоки, намотанные бифилярно.

В логометрах противодействующий момент создаётся не механическим путём, а электрическим. Для этого в магнитоэлектрическом логометре подвижная часть выполняется в виде двух жёстко скреплённых между собой рамок, по обмоткам которых протекают токи I1 и I2. Ток к обмоткам подводится с помощью безмоментных токоподводов, выполняемых в виде тонких неупругих ленточек.

Направления токов в обмотках выбираются так, чтобы моменты М1 и М2, создаваемые рамками, действовали навтречу друг другу. Один из моментов может считаться вращающим, а второй – протеводействующим. Кроме того, хотя бы один из моментов должен зависеть от угла поворота.

Уравнение преобразования для логометра имеет следующий вид : α=F( . Логометр измеряет отношение токов в обмотках.

В конструкциях омметров используются измерительные механизмы с механическим противодействующим моментом («обычные») и логометрические измерительные механизмы.

Общий недостаток «обычных» приборов – зависимость показаний от напряжения источника питания, что требует подстройки «нуля» перед каждым измерением.

А вот показания омметра на основе логометрического ИМ не зависят от напряжения источника питания, что является его достоинством.

Магнитоэлектрические приборы с преобразователями

Использование преобразователя переменного тока в постоянный, позволяет выполнять измерения магнито- электрическим прибором в цепях переменного тока. В зависимости от вида используемого преобразователя различают выпрямительные и термоэлектрические приборы.

В амперметре выпрямительной системы измеряемый ток i(t) выпрямляется и проходит через обмотку катушки магнитоэлектрического ИМ.

Все приборы выпрямительной системы градуируются в действующих значениях токов (напряжений) синусоидальной формы и не предназначены для измерений в цепях с токами произвольной формы.

В амперметре термоэлектрической системы измеряемый ток, it) проходит через нагреватель термопреобразователя (ТП). При его нагреве на свободных концах термопары возникает термоЭДС, вызывающая постоянный ток через обмотку катушки магнитоэлектрического ИМ. Значение этого тока нелинейно зависит от действующего значения I измеряемого тока i(t) и мало зависит от формы и спектра.

Схемы вольтметров выпрямительной и термоэлектрической систем отличаются от схем амперметров наличием добавочного сопротивления, включённого последовательно в цепь измеряемого i(t) и выполняющего функцию преобразователя измеряемого напряжения в ток.

Обычно приборы выпрямительной и термоэлектрической систем делают многопредельными и комбинированными, что позволяет использовать их для измерения как переменных, так и постоянных токов и напряжений.

Дата добавления: 2015-09-29 ; просмотров: 3142 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Принцип — действие — прибор — магнитоэлектрическая система

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем катушки, которое возникает при прохождении по обмотке катушки электрического тока. Схема такого прибора приведена на рис. 15.13. Между полюсными наконечниками 2 постоянного магнита / неподвижно закреплен стальной сердечник 3 цилиндрической формы, с помощью которого создается однородное радиально направленное магнитное поле. В воздушном зазоре между полюсными наконечниками и цилиндрическим сердечником свободно перемещается на оси катушка ( рамка) 4, которая охватывает стальной сердечник. Катушка соединяется через противодействующие пружины 5 и 6 с источником измеряемого постоянного тока. Для измерения переменного тока магнитоэлектрические приборы не годятся. Кроме того, эти приборы очень чувствительны к перегрузкам. Поэтому их применяют в основном как контрольные и лабораторные приборы. [2]

Принцип действия приборов магнитоэлектрической системы основан на воздействии магнитного поля постоянного магнита на подвижную катушку с током, помещенную в это поле. Устройство прибора такой системы с механической противодействующей силой показано на рис. 9.3. Прибор состоит из неподвижной части, представляющей собой подковообразный магнит 3 с полюсными наконечниками, которые выполнены из магнитомягкой стали и имеют цилиндрическую расточку. В пространстве между полюсными наконечниками неподвижно закреплен стальной цилиндрический сердечник 2, который необходим для создания в воздушном зазоре 1 между полюсными наконечниками и сердечником равномерного радиально направленного поля. Концы обмотки соединены со спиральными пружинами 5 ( растяжками или подвесом), изолированно закрепленными на стальных полуосях OOj рамки. Пружины изготовляют из фосфористой бронзы. Их основное назначение — создание противодействующего момента в приборе и возвращение подвижной системы в первоначальное ( нулевое) положение, когда прибор отключен от сети. [3]

Принцип действия приборов магнитоэлектрической системы основан на воздействии магнитного поля постоянного магнита на подвижную катушку с током, помещенную в это поле. Устройство прибора такой системы с механической противодействующей силой показано на рис. 2.3. Прибор состоит из неподвижной части, представляющей собой подковообразный магнит 3 с полюсными наконечниками, которые выполнены из магнитомягкой стали и имеют цилиндрическую расточку. В пространстве между полюсными наконечниками неподвижно закреплен стальной цилиндрический сердечник 2, который необходим для создания в воздушном зазоре 1 между полюсными наконечниками и сердечником равномерного радиально направленного поля. Концы обмотки соединены со спиральными пружинами 5 ( растяжками или подвесом), изолированно закрепленными на стальных полуосях 00, рамки. С другой стороны, пружины своими свободными концами соединены с двумя неподвижными проводами, подводящими ток к катушке, т.е. пружины являются токоведущими частями прибора. Пружины изготовляют из фосфористой бронзы. [4]

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии проводников с измеряемым током и полем постоянного магнита. Приборы применяются в цепях постоянного тока для измерения токов и напряжений. Они имеют равномерную шкалу, высокую чувствительность и точность, небольшую потребляемую мощность, устойчивость к перегрузкам. Внешние магнитные поля и изменение температуры окружающего воздуха мало влияют на их показания. [5]

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии проводника при протекании по нему тока с полем постоянного магнита. Конструктивно [2] приборы этой системы разделяют на приборы с подвижной рамкой — магнитоэлектрические, в которых неподвижно закреплен магнит и поворачивается ( или перемещается) катушка с током, и приборы с подвижным магнитом — магнитоэлектрические с подвижным магнитом, в которых неподвижно закреплена катушка и поворачивается ( или перемещается) магнит. [6]

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с током, проходящим по обмотке подвижной катушки, помещенной в этом поле. [8]

Принцип действия приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с током, проходящим по подвижной обмотке. [9]

На чем основан принцип действия прибора магнитоэлектрической системы . [10]

Принцип действия прибора магнитоэлектрической системы основан на взаимодействии тока в рамке прибора с магнитным полем постоянного магнита. Если кроме поля магнита есть еще внешнее поле, то оно либо усиливает основное поле, либо ослабляет его, что вызывает дополнительную погрешность. [11]

Магнитоэлектрическую систему применяют для измерения величины и напряжения постоянного тока. Принцип действия приборов магнитоэлектрической системы заключается во взаимодействии постоянного тока, проходящего через изолированную проволоку, намотанную на подвижную рамку, и магнитного поля постоянного магнита. В результате взаимодействия рамка вместе со стрелкой поворачивается на определенный угол и показывает величину или напряжение измеряемого тока. Конструкция измерительного механизма приборов не позволяет измерять большие напряжения и токи. [12]

Угол поворота подвижной катушки зависит от величины тока, проходящего через прибор, и силы противодействия спиральных пружин. Мы видим, что принцип действия приборов электродинамической системы похож на принцип действия приборов магнитоэлектрической системы . Разница между ними в том, что в приборах магнитоэлектрической системы магнитное поле создается постоянным магнитом, а в приборах электродинамической системы — неподвижной катушкой, по которой проходит ток. [14]

В измерительных механизмах магнитоэлектрической системы вращающий момент создается взаи­модействием измеряемого постоянного тока в катушке механизма с полем постоянного магнита. Существуют два основных типа приборов магнитоэлектрической системы: приборы с подвижной катушкой (подвижной рамкой) и приборы с подвижным магнитом, причем первые применяются значительно чаще, чем вторые.

Принцип действий магнитоэлектрических приборов основан на взаимодействии магнитного поля постоянного магнита и обмотки с током. В воздушном зазоре 1 (рис. 7.1) между неподвижным стальным цилиндром 2 и полюсными наконечниками NS неподвижного постоянного магнита расположена алюминиевая рамка с обмоткой 3, состоящей из w витков изолированной проволоки.

Рамка жестко соединена с двумя полуосями О и О’, которые своими концами опираются о подшипники. На полуоси О закреплены указательная стрелка 4 и две спиральные пружинки 5 и 5′, через которые к катушке подводится измеряемый ток I, противовесы 6. Полюсные наконечники NS и стальной цилиндр 2 обеспечивают в зазоре 1 равномерное радиальное магнитное поле с индукцией В. В результате взаимодействия магнитного поля с током в проводниках обмотки 3 создается вращающий момент. Рамка с обмоткой при этом поворачивается и стрелка отклоняется на угол α. Электромагнитная сила Fэм , действующая на обмотку, равна Fэм = wBlI.

Вращающий момент, создаваемый силой Fэм,

где d и l— ширина и длина рамки (обмотки); С1 — коэффициент, зависящий от числа витков w, размеров обмотки и магнитной индукции В.

Повороту рамки противодействуют спиральные пружинки 5 и 5′, создающие противодействующий момент, пропорциональный углу закручивания α:

где С2 — коэффициент, зависящий от жесткости пружинок.

Стрелка устанавливается на определенном делении шкалы при равенстве моментов

Мвр = Мпр, т. е. когда C1I = С2α. Угол поворота стрелки

С2 пропорционален току. Следовательно, у приборов магнитоэлектрической системы шкала равномерная, что является их достоинством.

Направление вращающего момента (определяемое правилом левой руки) изменяется при изменении направления тока. При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по значению и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока.

Достоинства приборов магнитоэлектрической системы: точность показаний, малая чувствительность к посторонним магнитным полям, незначительное потребление мощности, равномерность шкалы. К недостаткам следует отнести необходимость применения специальных преобразователей при измерениях в цепях переменного тока и чувствительность к перегрузкам (тонкие токопроводящие пружинки 5 и 5′ из фосфористой бронзы при перегрузках нагреваются и изменяют свои упругие свойства).

15. электромагнитные приборы, принцип действия, достоинства, недостатки, область применения

Электроизмерительные приборы — класс устройств, применяемых для измерения различных электрических величин.

Принцип работы приборов этой системы основан на взаимодействии магнитного поля, создаваемого катушкой со стальным сердечником, помещенным в поле этой катушки. Электромагнитный измерительный механизм выполняют с плоской или круглой катушкой.

Достоинством приборов электромагнитной системы являются простота и надежность конструкции, невысокая стоимость, стойкость к перегрузкам и пригодность для измерений в цепях переменного и постоянного тока.

К недостаткам относятся невысокая точность, малая чувствительность, неравномерность шкалы и зависимость показаний от внешних магнитных полей и частоты переменного тока.

Электромагнитные приборы используют, главным образом, для измерения тока и напряжения в промышленных установках переменного тока.

16. Электродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия электродинамических приборов основан на взаимодействии магнитных полей двух катушек одной, неподвижно закрепленной, и другой, сидящей на оси и могущей поворачиваться.

Достоинствами электродинамических приборов являются пригодность для измерения постоянного и переменного тока, равномерность шкалы у ваттметров и относительно высокая точность по сравнению с другими приборами, предназначенными для измерений в цепях переменного тока.

К недостаткам относится сильное влияние внешних магнитных полей на точность измерений, чувствительность к перегрузкам и относительно высокая стоимость.

Электродинамические приборы применяют обычно в качестве точных лабораторных приборов, а также в качестве ваттметров и счетчиков электрической энергии в цепях постоянного тока.

17.ферродинамические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Работа ферродинамических приборов основана на том же принципе, что и приборов электродинамической системы. Для усиления магнитного поля в ферродинамическом измерительном механизме применен магнитопровод из ферромагнитного материала.

Ферродинамические приборы используют в качестве щитовых амперметров, ваттметров и вольтметров, работающих в условиях тряски и вибраций (например, на э. п. с. переменного тока). Кроме того, их применяют в качестве самопишущих приборов, так как они имеют значительный вращающий момент, преодолевающий трение в записывающих устройствах.

Достоинства: незначительное влияние внешних магнитных полей, большой вращающий момент, прочная конструкция, устойчивость к вибрациям и ударам, небольшая потребляемая мощность.

Недостатки: дополнительные погрешности вследствие влияния гистерезиса и вихревых токов, зависимость показаний от частоты, невысокая точность щитовых приборов – обычно 1,5; 2,0.

18 электростатические измерительные приборы, принцип действия, достоинства, недостатки, область применения

Принцип действия: основой электростатических приборов является электростатический измерительный механизм с отсчетным устройством.

Они применяются, главным образом, для измерения напряжений переменного и постоянного тока. Находят применение также электрометры — электростатические приборы специальной конструкции, требующие вспомогательных источников питания. Электрометры обладают повышенной чувствительностью к напряжению.

Достоинствами электростатических приборов являются:

малое собственное потребление мощности, что объясняется малыми токами утечки и малыми диэлектрическими потерями в изоляции, малой емкостью измерительного механизма, большой диапазон измеряемых напряжений, возможность измерений на постоянном и на переменном токе, независимость показаний от частоты в широком диапазоне и формы измеряемого напряжения, независимость показаний от внешних магнитных полей.

К недостаткам электростатических приборов можно отнести:

малую чувствительность по напряжению, влияние внешних электростатических полей, что требует экранирование измерительного механизма, неравномерную шкалу (при соответствующем выборе формы подвижных и неподвижных электродов можно получить практически равномерную шкалу на участке от 15-25 % до 100 % от ее номинального значения).

Оценить статью
Добавить комментарий