Содержание
Магнитные материалы обладают способностью при внесении их в магнитное поле намагничиваться, а некоторые из них сохраняют свою намагниченность и после прекращения воздействия магнитного поля.
Магнитные свойства материалов характеризуются петлей гистерезиса, кривой намагничивания, магнитной проницаемостью, потерями энергии при перемагничивании.
При циклическом изменении напряженности постоянного магнитного поля от 0 до +Н, от +Н до —Н и снова от —Н до +Н кривая изменения индукции (кривая перемагничивания) имеет форму замкнутой кривой — петли гистерезиса.

Рис. 6.1. Петли гистерезиса при различных значениях напряженности внешнего магнитного поля
Площадь гистерезисных петель в промежуточных и предельном состояниях характеризует рассеивание электрической энергии в процессе перемагничивания материала, т.е. потери на гистерезис. Площадь гистерезисной петли зависит от свойств материала, его геометрических размеров и частоты перемагничивания.

Это важнейшая характеристика магнитных материалов, она показывает зависимость намагниченности или магнитной индукции материала от напряженности внешнего поля Н. Магнитная индукция материала Bi измеряется в теслах (Тл) и связана с намагниченностью М формулой

где
— магнитная постоянная, равная 4
10 -7 Гн/м; М-намагниченность.
Для характеристики поведения магнитных материалов в поле с напряженностью Н пользуются понятиями абсолютной магнитной проницаемости
и относительной магнитной проницаемости
:


где
— абсолютная магнитная проницаемость, Гн/м;
— магнитная постоянная.
Потери энергии при перемагничивании.
Это необратимые потери электрической энергии, которая выделяется в материале в виде тепла.
Потери на перемагничивание магнитного материала складывается из потерь на гистерезис и динамических потерь.
Потери на гистерезис создаются в процессе смещения стенок доменов на начальной стадии намагничивания. Вследствие неоднородности структуры магнитного материала на перемещение стенок доменов затрачивается магнитная энергия.
Некоторые области применения полимерных магнитов:
Акустические системы, реле и бесконтактные датчики
Электромашины, магнитные сепараторы, холодильники
Магнитные элементы кодовых замков и охранной сигнализации
Тахогенераторы, датчики положения, электроизмерительные приборы
Медицина (магнитотерапия, магнитные матрасы)
Магнитомягкие материалы
магнитно-мягкие материалы — материалы, обладающие свойствами ферромагнетика или ферримагнетика, причём их коэрцитивная сила по индукции составляет не более 4 кА/м. Такие материалы также обладают высокой магнитной проницаемостью и малыми потерями на гистерезис.
К магнитомягким материалам относят:
1. Технически чистое железо (электротехническая низкоуглеродистая сталь).
2. Электротехнические кремнистые стали.
3. Железоникелевые и железокобальтовые сплавы.
4. Магнитомягкие ферриты.
Магнитные свойства низкоуглеродистой стали (технически чистого железа) зависят от содержания примесей, искажения кристаллической решетки из-за деформации, величины зерна и термической обработки. По причине низкого удельного сопротивления технически чистое железо в электротехнике используется довольно редко, в основном для магнитопроводов постоянного магнитного потока.
Электротехническая кремнистая сталь является основным магнитным материалом массового потребления. Это сплав железа с кремнием. Легирование кремнием позволяет уменьшить коэрцитивную силу и увеличить удельное сопротивление, то есть снизить потери на вихревые токи.
Листовая электротехническая сталь, поставляемая в отдельных листах или рулонах, и ленточная сталь, поставляемая только в рулонах — являются полуфабрикатами, предназначенными для изготовления магнитопроводов (сердечников).
Магнитопроводы формируют либо из отдельных пластин, получаемых штамповкой или резкой, либо навивкой из лент.
Железоникелевые сплавы называют пермаллоями. Они обладают большой начальной магнитной проницаемостью в области слабых магнитных полей. Пермаллои применяют для сердечников малогабаритных силовых трансформаторов, дросселей и реле.
Ферриты представляют собой магнитную керамику с большим удельным сопротивлением, во много раз превышающим сопротивление железа. Ферриты применяют в высокочастотных цепях, так как их магнитная проницаемость практически не снижается с увеличением частоты.
Недостатком ферритов является их низкая индукция насыщения и низкая механическая прочность. Поэтому ферриты применяют, как правило, в низковольтной электронике.
74. Магнитотвёрдые материалы
Магнитотвёрдые материалы – материалы, характеризующиеся большой коэрцитивной силой и остаточной индукцией. Используются для изготовления постоянных магнитов различного назначения.
К ним относятся: углеродистые, вольфрамовые, хромистые, кобальтовые стали, коэрцитивная сила которых равна 5000. 13000 А/м, а остаточная индукция – 0,7. 1,0 Т.
Обладают ковкостью, поддаются прокатке и механической обработке.
Магнитотвердыми материалами являются также сплавы с различным содержанием железа, алюминия, никеля, кремния, кобальта.
Они называются альни, альниси, альнико, магнико и др.
Обладают прекрасными магнитными свойствами. Их коэрцитивная сила равна 20000. 60000 А/м, а остаточная индукция – 0,2. 2,25 Т.
Магниты из этих сплавов изготавливаются отливкой и обрабатываются только шлифованием.
Для получения высокой коэрцитивной силы в магнитных материалах кроме выбора химического состава используют технологии, оптимизирующие кристаллическую структуру и затрудняющие процесс перемагничивания. Это закалка сталей на мартенсит, дисперсионное твердение сплавов, создание высоких внутренних механических напряжений и др. В результате затрудняются процессы смещения доменных границ. У высококоэрцитивных сплавов магнитная текстура создается путем их охлаждения в сильном магнитном поле.
Применяют магнитотвердые материалы для производства постоянных магнитов. Они являются источниками постоянных магнитных полей, используемых в различной аппаратуре в электро- и радиотехнике, автоматике, приборостроении, электронике, в устройствах электромагнитной записи, фокусирующих устройствах для телевизоров, микрофонах, электроизмерительных приборах, микроэлектронике, СВЧ-приборах и т.д. Их используют в электрических машинах малой мощности, для записи и хранения цифровой, звуковой и видеоинформации и др. Преимущества постоянных магнитов по сравнению с электромагнитами постоянного тока — повышенная работоспособность; экономия материалов и потребления энергии; экономическая и техническая выгода применения.
Дата добавления: 2017-02-25 ; просмотров: 2500 | Нарушение авторских прав
В электротехнике ферромагнетики играют существенную роль. К ферримагнитным материалам могут предъявляться разные требования в зависимости от их назначения.
Постоянные магниты
Были созданы специальные магнитные материалы с заданными свойствами. Так, для того чтобы получить постоянный магнит необходимо найти ферромагнетик у которого петля гистерезиса была бы максимально широкой. Что значило бы, при нулевом внешнем магнитном поле (после его выключения) остаточная намагниченность была максимально большой. Велика, также коэрцитивная сила таких магнетиков. Для такого вещества границы доменов должны оставаться неизменными. Такой материал был создан. Его название $AlNiCo V$ — это сплав, он имеет состав: $51\% Fe, 8\%Al, 14\%Ni, 24\% Co, 3\% Cu$. Движение доменных стенок в этом сплаве крайне затруднительно. В процессе затвердевания AlNiCo V образует «вторую фазу», которая имеет зерненый состав. Вещество охлаждают во внешнем магнитном поле, при этом зерна растут в нужной ориентации. Кроме прочего материал еще подвергается механической обработке таким образом, что его кристаллы выстраиваются в виде продолговатых зерен в направлении линий преимущественной намагниченности. Петлю гистерезиса для этого ферромагнетика получают в 500 раз шире, чем петля гистерезиса мягкого железа. $AlNiCo$ — термостабильный магнит, имеет высокую коррозионную и радиационную стойкость. Остаточная намагниченность порядка $B_rsim 1,1-1,5 Тл,$ коэрцитивная сила $H_k=0,5-1,9 кЭ$ (кило эрстед). Максимальная рабочая температура до $450^oС$. Сейчас делаются попытки сделать наноструктурные сплавы. Используются в акустических системах, студийных микрофонах, звукоснимателях, электродвигателях, реле, сенсорах.
Попробуй обратиться за помощью к преподавателям
Спеченные редкоземельные магниты на основе SmCo. Не требуют защитного покрытия, имеют высокие рабочие температуры и высокую коэрцитивную силу, то есть устойчивы к размагничиванию. Но довольно хрупкие и очень дорогие. Остаточная намагниченность порядка $B_rsim 0,8- 1,1Тл,$ коэрцитивная сила $H_k=8-10 кЭ. $ Используют в космических аппаратах, мобильной телефонии, компьютерной технике, авиастроении, медицинском оборудовании, микро электромеханических приборах.
Неодимовые магниты, сплавы Nd-Fe-B. Рабочие температуры невысокие $-60-220^oC$. Довольно хрупкие. Если перегреты требуют перемагничивания. Подвержены коррозии. Легко обрабатываются механически, гибкие. Спечённые неодимовые магниты имеют наибольшую остаточную намагниченность порядка $B_rsim 1- 1,4Тл$, коэрцитивная сила $H_k=12 кЭ. $ Используются в компьютерной технике, двигателях, датчиках.
Магниты могут терять намагниченность при механических вибрациях, деформациях, перепадах температуры. Полное размагничивание происходит при температуре выше точки Кюри, в сильных магнитных полях, если ферромагнит находится в затухающем переменном магнитном поле или постоянное внешнее поле имеет противоположное направление к внутреннему полю. Железные магниты размагничиваются при комнатных условиях многие десятки лет. Многие искусственно созданные магниты стареют быстро.
Задай вопрос специалистам и получи
ответ уже через 15 минут!
Постоянные магниты также применяются:
- В качестве зажимов, крепления, фиксации предметов.
- Для поиска железных предметов методами зондирования, уборки металлического мусора.
Использование «мягких» ферромагнетиков
Ферромагнетики используют при изготовлении трансформаторов и двигателей. Но в данном случае ферромагнетик должен обладать иными свойствами, чем пригодный для постоянных магнитов. Материал должен быть «мягким» в магнитном отношении. Его намагниченность должна легко меняться при изменении внешнего магнитного поля. Требованиями к ферромагнетику в этом случае являются: высокая магнитная проницаемость и слабый гистерезис. В данном случае применяют чистые вещества без примесей с минимальным количеством доменов, стенки доменов должны легко перемещаться. Анизотропию кристаллов пытаются минимизировать. В таком случае, если зерна вещества находятся под неправильным углом к полю, магнетик все равно хорошо намагничивается. Так, подобрали сплав железа и никеля (около 80\% Ni и 20\%Fe) легированный хромом, медью или кремнием, при этом получается очень «мягкий» сплав, который легко намагничивается. Такие вещества называют пермаллоями.
Хорошие магнитные свойства пермаллоя, который содержит 78,5 никеля получены при двухэтапной термической обработки сплава. На первом этапе его нагревают до $900-950^oС$ и выдерживают около часа, затем охлаждают с низкой скоростью. На втором этапе нагрев происходит до $600^oС$ и охлаждение при комнатной температуре со скоростью 1500 $frac<град><мин>$.
Они используются в качественных трансформаторах, но не годятся для постоянных магнитов. Пермаллои не терпят деформаций, их свойства существенно изменяются.
Сплавы с максимальной магнитной проницаемостью используют для сердечников малоразмерных трансформаторов, реле, магнитных экранов, магнитных усилителей, реле. Сплавы с повышенным удельным сопротивлением применяют для сердечников импульсных трансформаторов, высокочастотной аппаратуры.
При расчете разного рода устройств переменного тока, которые содержат ферромагнетики, всегда проводят расчет теплового эффекта при гистерезисе. Наличие этого явления в железных сердечниках трансформаторов или вращающихся якорях генераторов постоянного тока приводит к затратам части энергии на тепло гистерезиса, что снижает КПД устройств. Значит, для подобных устройств, следует подбирать специальные сорта ферромагнетиков, площадь петли гистерезиса для которых, минимальна.
Исследования показали, что некоторые сплавы неферромагнитных металлов в определенном соотношении компонент имеют сильные ферромагнитные свойства. Например, марганец — висмут, хром — теллур и др.
Ферриты
В том случае если величина намагничивания подрешеток отличается, то возникает некомпенсированный антиферромагнетизм. Тело может иметь значительный магнитный момент. Такие вещества называют ферримагнетиками. По своим магнитным свойствам они аналогичны ферромагнетикам. Если ферримагнетики имеют полупроводниковые свойства, то их называют ферритами — магнитные полупроводники, которые имеют большое удельное электросопротивление (около $<10>^2-<10>^6Омcdot см$). Намагниченность насыщения у ферримагнетиков меньше, чем у ферромагнетиков. Они полезны только при слабых полях. Ферриты — ферромагнитные изоляторы. Вихревые токи, которые создаются в них в полях с высокой частотой очень маленькие, это позволяет использовать ферриты в микроволновой технике. Микрополя проникают внутрь ферритов, тогда как в ферромагнетиках это не возможно из-за вихревых токов.
Эти вещества, также используют в радиотехнике при больших частотах, там, где в ферромагнетиках из-за их большой проводимости возникают большие потери на вихревые токи.
Задание: Какой из ферромагнитных материалов, на рис.1 наиболее пригоден для электромагнитов с быстрой регулировкой подъёмной силы? Для постоянного магнита?

Для постоянного магнита более пригоден ферромагнетик с широкой петлей гистерезиса, которой соответствует большая коэрцитивная сила, позволяющая веществу размагничиваться с меньшей скоростью и большая остаточная намагниченность. Значит, ферромагнетик с номером 1 более пригоден для постоянного магнита.
Для электромагнита с быстрой регулировкой необходим ферромагнетик, у которого петля гистерезиса узкая, меньше коэрцитивная сила и остаточная намагниченность, следовательно, для этих целей удобнее ферромагнетик номер 2.
Задание: Можно ли электромагнитным краном переносить раскаленные стальные трубы?
Очевидно, что делать этого не стоит, так как ферромагнитные свойства при температурах выше точки Кюри ферромагнетиком утрачиваются, и он станет парамагнетиком с очень малой магнитной проницаемостью и его магнитные свойства станут недостаточными, для использования в качестве средства транспортировки труб.
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь
Ферромагнетики играют существенную роль в электротехнике. К ним могут быть предъявлены различные требования в зависимости от назначения.
Постоянные магниты
Были созданы специальные материалы с заданными свойствами. Для получения постоянного магнита необходимо отыскать ферромагнетик с максимально широкой петлей гистерезиса. То есть при нулевом внешнем магните остаточная намагниченность будет максимально большая. Такие магнетики обладают высокой коэрцитивной силой. Вещество должно иметь неизменные границы доменов.
Было произведено создание такого материала: AlNiCoV . В состав сплава входили 51 % Fe , 8 % Al , 14 % Ni , 24 % C 0 , 3 % Cu . Материал характеризуется затруднительным движением доменных стенок. Когда AlNiCoV затвердевает, происходит образование «второй фазы», которая обладает зернистым составом. Вещество проходит охлаждение во внешнем магнитном поле, причем увеличение зерен идет в необходимой ориентации. Материал проходит механическую обработку таким образом, что выстраивание кристаллов происходит в виде продолговатых зерен по направлению линий преимущественной намагниченности.
Петля гистерезиса такого ферромагнетика должна быть в 500 раз шире петли мягкого железа.
AlNiCo является термостабильным магнитом с высокой коррозионной и радиационной стойкостью. Обладает остаточной намагниченностью порядка B r
1 , 1 — 1 , 5 Т л , коэрцитивной силой H k = 0 , 5 — 1 , 9 к Э . Максимальная рабочая температура достигает 450 ° C . На данный момент предпринимаются попытки изготовления наноструктурных сплавов. Их применяют в акустических системах, студийных микрофонах, электродвигателях, сенсорах.
Спеченные редкоземельные магниты на основе SmCo
Такие магниты не требуют защитного покрытия, так как имеют высокую рабочую температуру и коэрцитивную силу, иначе говоря, устойчивы к размагничиванию. Являются довольно хрупкими и очень дорогими. Обладают остаточной намагниченностью порядка B r
0 , 8 — 1 , 1 Т л , коэрцитивной силой H k = 8 — 10 к Э . Их применяют в космических аппаратах, мобильной телефонии, компьютерной технике, авиастроении, медицинском оборудовании, микро-электромеханических приборах.
Неодимовые магниты. Сплавы Nd — Fe — B
Являются довольно хрупкими с достаточно невысокими рабочими температурами — 60 — 220 ° С . При перегревании нуждаются в перемагничивании. Подвергаются коррозии. Такие магниты легко обрабатываются механически, обладают гибкостью. Они имеют самое высокое значение остаточной намагниченности порядка B r
1 — 1 , 4 Т л , коэрцитивной силы H k = 12 к Э . Применимы в компьютерной технике или датчиках.
При перепадах температур, деформациях, механических вибрациях магниты могут терять свойства намагниченности. Полного размагничивания они достигают при температуре выше точки Кюри в сильных магнитных полях, если ферромагнит располагается в затухающем переменном магнитном поле или постоянное внешнее имеет противоположное направление относительно внутреннего. Железные магниты могут размагничиваться в домашних условиях очень долго. Искусственно созданные могут быстро стареть.
Постоянные магниты применимы:
- как зажимы, крепления, фиксация предметов;
- для поиска железных предметов методом зондирования.
Использование «мягких» ферромагнетиков
Такие ферромагнетики применяют при изготовлении двигателей. Но данный случай предполагает свойства, отличные от постоянных магнитов. То есть в магнитном отношении материал должен быть «мягким». Намагниченность изменяется при модификации внешнего магнитного поля. Тогда ферромагнетик должен обладать высокой магнитной проницаемостью и слабым гистерезисом.
Данный случай подразумевает применение чистых веществ без примесей и с минимальным количеством доменов, причем их стенки должны с легкостью перемещаться. Происходит минимизация анизотропии кристаллов. Если нахождение зерен под неправильным углом к полю, магнетик все равно намагнитится. Специальный подобранный сплав железа и никеля (около 80 % Ni и 20 % Fe ), легированный хромом, медью или кремнием, получается «мягким» и легко намагничивается. Такие вещества получили названия пермаллоев.
Хорошими магнитными свойствами обладает пермаллой, содержащий 75 , 8 % никеля, полученный при двухэтапной обработке сплава. На первом этапе температура достигает 900 — 950 ° C в течение часа, после чего происходит охлаждение с низкой скоростью. Второй этап подразумевает нагрев до
600 ° C и охлаждение при комнатной температуре со скоростью 1500 г р а д м и н .
Чаще всего их применяют в трансформаторах, однако они непригодны для использования в качестве постоянных магнитов. Пермаллои не следует подвергать деформации, так как происходит изменение их свойств.
При наличии максимального значения магнитной проницаемости сплава используют для сердечников малоразмерных трансформаторов, магнитных экранов, реле. Если имеется повышенное удельное сопротивление, то применяют для сердечников импульсных трансформаторов или высокочастотной аппаратуры.
При расчете разного рода устройств переменного тока, содержащие ферромагнетики, необходимо оценивать тепловой эффект при гистерезисе. Это явление в железных сердечниках трансформаторов или вращающихся якорях генераторов постоянного тока приводит к затратам части энергии на тепло гистерезиса, уменьшающим КПД устройства. Отсюда следует, что для такого оборудования подбираются специальные виды ферромагнетиков, у которых площади петель гистерезиса минимальные
По исследованиям стало видно наличие мильных ферромагнитных свойств у некоторых неферромагнитных металлов при определенном их соотношении. К ним относят марганец-висмут, хром-теллур и другие.
Ферриты
При наличии отличий во время намагничивания подрешеток, возникает некомпенсированный антиферромагнетизм. Это объясняется присутствием у тела значительного магнитного момента. Данные вещества получили название ферримагнетиков.
Их магнитные свойства не отличаются от свойств ферромагнетиков.
Если ферримагнетики обладают полупроводниковыми свойствами, то их называют ферритами – магнитными полупроводниками, имеющими большое удельное сопротивление (около 10 2 — 10 6 О м · с м ).
Намагниченность насыщения у ферримагнетиков намного меньше, чем у ферромагнетиков. Они применимы только при наличии слабого поля. Ферриты называют ферромагнитными изоляторами. Создаваемые в них вихревые токи в полях с высокой частотой по значению очень малы, что позволяет использовать их в микроволновой технике. Микрополя проникают внутрь ферритов, когда в ферромагнетиках это невозможно по причине наличия вихревых токов.
Вещества используют в радиотехнике при наличии больших частот, где в ферромагнетиках из-за большой проводимости появляются огромные потери на вихревые токи.
Дан рисунок, на котором изображены два ферромагнитных материала. Какой из них наиболее пригодный для электромагнитов с быстрой регулировкой подъемной силы? Для использования в качестве постоянного магнита?

У постоянного магнита более применим ферромагнетик с широкой петлей гистерезиса с соответствующей большей коэрцитивной силой, позволяющей веществу размагничиваться с меньшей скоростью и большой остаточной намагниченностью. Отсюда следует, что ферромагнетик под номером 1 считается наиболее пригодным для использования в качестве постоянного магнита.
Для электромагнита с быстрой регулировкой требуется ферромагнетик, имеющий узкую петлю гистерезиса, меньшую коэрцитивную силу и остаточную намагниченность. Отсюда следует, что подходящим вариантом будет ферромагнетик под номером 2 .
Возможно ли переносить раскаленные стальные трубы при помощи электромагнитного крана?
Это делать не стоит. Ферромагнитные свойства при температурах выше точки Кюри исчезают, она становится парамагнетиком с малой магнитной проницаемостью. Отсюда следует вывод, что наличие его магнитных свойств не будет достаточно для использования его как средство переноса труб.