Литий ионные аккумуляторы устройство и принцип действия

Литий ионные аккумуляторы устройство и принцип действия

Содержание

Сегодня именно литий-ионные аккумуляторы наиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.

Устройство

В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.

  • Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
  • Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
  • Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
  • Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
  • Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.
Читайте также:  Нематода фото и как с ней бороться

Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.

Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.

Принцип действия
  • В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
  • Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
  • Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
  • После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.

При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.

  • Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.
Читайте также:  Ламповый предварительный усилитель с темброблоком на 6н2п

Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.

Стандартная зарядка аккумулятора выглядит следующим образом:
  • Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
  • Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
  • В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.

Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.

Разновидности и применение

Существуют два форм-фактора литий-ионных аккумуляторов:

  1. Цилиндрические литий-ионные аккумуляторы.
  2. Таблеточные литий-ионные аккумуляторы.

Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.

Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
  1. Литий-кобальтовый аккумулятор . Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.

Области применения; мобильная электроника.

  1. Литий-марганцевый аккумулятор . Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.

Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.

  1. Литий-никель-марганец-кобальт-оксидный аккумулятор . В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.

Области применения; для частного и промышленного использования (источники бесперебойного питания, системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).

  1. Литий-железо-фосфатный аккумулятор . Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.

Области применения; стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.

  1. Литий-никель-кобальт-алюминий-оксидный аккумулятор . Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.

Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.

  1. Литий-титанатный аккумулятор . Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.

Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.

Сегодня именно литий-ионные аккумуляторы наиболее часто применяются в различных областях. Особенно широко они используются в мобильной электронике (КПК, мобильные телефоны, ноутбуки и многое другое), электромобилях и так далее. Это связано с их преимуществами в сравнении с ранее широко применявшимися никель-кадмиевыми (Ni-Cd) и никель-металлогидридными (Ni-MH) аккумуляторами. И если последние приблизились вплотную к своему теоретическому пределу, то технологии литий-ионные аккумуляторы находятся в начале пути.

Устройство

В литий-ионных аккумуляторах в качестве отрицательного электрода (катода) работает алюминий, а положительным электродом (анодом) выступает медь. Электроды могут быть выполнены в разной форме, однако, как правило, это фольга в форме продолговатого пакета или цилиндра.

  • Анодный материал на медной фольге и катодный материал на алюминиевой фольге разделяются пористым сепаратором, который пропитан электролитом.
  • Пакет электродов устанавливаются в герметичный корпус, а аноды и катоды подсоединяются к клеммам-токосъемникам
  • Под крышкой аккумулятора могут быть специальные устройства. Одно устройство реагирует увеличением сопротивления на положительный температурный коэффициент. Второе устройство разрывает электрическую связь между положительной клеммой и катодом при повышении давления газов в аккумуляторе сверх допустимого предела. В некоторых случаях корпус оснащается предохранительным клапаном, который сбрасывает внутреннее давление при нарушениях условий эксплуатации или аварийных ситуациях.
  • Для повышения безопасности эксплуатации в ряде аккумуляторов применяется и внешняя электронная защита. Она не допускает возможности чрезмерного разогрева, короткого замыкания и перезаряда аккумулятора.
  • Конструктивно аккумуляторы производятся в призматическом и цилиндрическом вариантах. Свернутый в виде рулона пакет сепаратора и электродов в цилиндрических аккумуляторах помешен в алюминиевый или стальной корпус, с которым соединяется отрицательный электрод. Через изолятор на крышку выводится положительный полюс аккумулятора. Призматические аккумуляторы создаются складыванием прямоугольных пластин друг на друга.

Подобные литий-ионные аккумуляторы позволяют обеспечить более плотную упаковку, однако в них труднее поддерживать сжимающие усилия на электроды, чем в цилиндрических. В ряде призматических батарей используется рулонная сборка пакета электродов, скрученных в эллиптическую спираль.

Большая часть аккумуляторов производится в призматических вариантах, так как основное их назначение — обеспечение работы ноутбуков и мобильников. Конструкция Li-ion аккумуляторов отличается абсолютной герметичностью. Данное требование продиктовано недопустимостью вытекания жидкого электролита. Если пары воды или кислород попадут внутрь, то происходит реакция с электролитом и материалами электродов, что ведет к полному выводу аккумулятора из строя.

Принцип действия
  • В литий-ионных аккумуляторах имеются два электрода в виде анода и катода, между ними находится электролит. На аноде при подключении батареи в замкнутую цепь образуется химическая реакция, которая приводит к образованию свободных электронов.
  • Указанные электроны стремятся попасть на катод, где меньше их концентрация. Однако от прямого пути к катоду от анода удерживает их электролит, который находится между электродами. Остается единственный путь – через цепь, куда замыкается батарея. При этом электроны, двигаясь по указанной цепи, питают устройство энергией.
  • Положительно заряженные ионы лития, которые были оставлены убежавшими электронами, в то же время через электролит направляются к катоду, дабы удовлетворить потребность в электронах на стороне катода.
  • После перемещения всех электронов к катоду наступает «смерть» батарейки. Но литий-ионный аккумулятор является перезаряжаемым, то есть процесс можно обратить вспять.

При помощи зарядного устройства можно впустить энергию в цепь, тем самым будет запущена реакция протекания в обратном направлении. В результате будет получено скопление электронов на аноде. После перезаряда аккумулятора он по большей части будет оставаться таковым до момента приведения его в действие. Однако с течением времени батарея будет утрачивать часть своего заряда даже в режиме ожидания.

  • Емкость батареи подразумевает количество ионов лития, которые могут внедриться в кратеры и крошечные поры анода или катода. Со временем, после многочисленных перезарядок катод и анод деградируют. В результате число ионов, которые они могут вместить, уменьшается. При этом аккумулятор более не может удерживать прежнее количество заряда. В конце концов, он полностью утрачивает свои функции.

Литий-ионные аккумуляторы выполнены так, что их зарядку нужно постоянно контролировать. С этой целью в корпус устанавливается специальная плата, она называется контроллер заряда. Чип на плате производит управление процессом зарядки аккумулятора.

Стандартная зарядка аккумулятора выглядит следующим образом:
  • Контроллер в начале процесса заряда подает ток величиной 10% от номинального. В данный момент напряжение поднимается до 2,8 В.
  • Затем ток заряда повышается до номинального. В данный период напряжение при постоянном токе растет до 4,2 В.
  • В завершении процесса заряда ток падает при постоянном напряжении 4,2 В до момент 100% заряда батареи.

Стадийность может отличаться в виду применения разных контроллеров, что ведет к разной скорости зарядки и соответственно суммарной стоимости аккумулятора. Литий-ионные аккумуляторы могут быть без защиты, то есть контроллер находится в зарядном устройстве, либо со встроенной защитой, то есть контроллер располагается внутри батареи. Могут быть устройства, где плата защиты встроена непосредственно в аккумулятор.

Разновидности и применение

Существуют два форм-фактора литий-ионных аккумуляторов:

  1. Цилиндрические литий-ионные аккумуляторы.
  2. Таблеточные литий-ионные аккумуляторы.

Разные подвиды электрохимической литий-ионной системы называются по типу применяемого активного вещества. Объединяет все эти литий-ионные аккумуляторы то, что все они являются герметичными необслуживаемым аккумуляторам.

Можно привести 6 наиболее распространенных типов литий-ионных аккумуляторов:
  1. Литий-кобальтовый аккумулятор . Он является популярным решением для цифровых камер, ноутбуков и мобильных телефонов в виду высокого показателя удельной энергоемкости. Аккумулятор состоит из катода из оксида кобальта и графитового анода. Недостатки литий-кобальтовых аккумуляторов: ограниченные возможности нагрузки, низкая термическая стабильность и относительно короткий срок службы.

Области применения; мобильная электроника.

  1. Литий-марганцевый аккумулятор . Катод из кристаллической литий-марганцевой шпинели выделяется трехмерной каркасной структурой. Шпинель обеспечивает низкое сопротивление, однако отличается более умеренной удельной энергоемкостью, чем кобальт.

Области применения; электрические силовые агрегаты, медицинское оборудование, электроинструмент.

  1. Литий-никель-марганец-кобальт-оксидный аккумулятор . В катоде батареи сочетаются кобальт, марганец и никель. Никель славится высокой удельной энергоемкостью, однако низкой стабильностью. Марганец обеспечивает низкое внутреннее сопротивление, однако приводит к низкой удельной энергоемкости. Сочетание металлов позволяет компенсировать их минусы и задействовать сильные стороны.

Области применения; для частного и промышленного использования (источники бесперебойного питания, системы безопасности, солнечные электростанции, аварийное освещение, телекоммуникации, электромобили, электровелосипеды и так далее).

  1. Литий-железо-фосфатный аккумулятор . Его основные преимущества: длительный срок службы, высокие показатели силы тока, стойкость к неправильному использованию, повышенная безопасность и хорошая термическая стабильность. Однако у такого аккумулятора небольшая емкость.

Области применения; стационарные и портативные специализированные устройства, где нужны выносливость и высокие токи нагрузки.

  1. Литий-никель-кобальт-алюминий-оксидный аккумулятор . Его основные преимущества: высокие показатели плотности энергии и энергоемкости, долговечность. Однако показатели безопасности и высокая стоимость ограничивают его применение.

Области применения; электрические силовые агрегаты, промышленность и медицинское оборудование.

  1. Литий-титанатный аккумулятор . Его основные преимущества: быстрая зарядка, длительный срок службы, широкий температурный диапазон, отличные показатели производительности и безопасности. Это наиболее безопасная литий-ионная аккумуляторная батарея.

Однако у нее высокая стоимость и низкая удельная энергоемкость. На данный момент ведутся разработки по удешевлению производства и увеличению удельной энергоемкости.

Об аккумуляторах литий-ионного класса сегодня слышали, пожалуй, все. Они представляют собой универсальный тип батарей, которые нашли свое применение в портативной электронике, специнструменте, электротранспорте.

Чтобы понять, как устроен Li-ion аккумулятор, предлагается последовательно изучить его структуру:

  • в основе системы находятся электроды (катод которых из оксида лития на алюминиевой фольге, анод – из пористого углерода на медной фольге);
  • между электродами расположен сепаратор с пористой структурой, хорошо прописанный электролитом – проводником;
  • набор электродов забран в специальный герметичный корпус, причем, катоды и аноды этих элементов подключены к токосъемникам;
  • дополнительно в конструкцию может включаться клапан-предохранитель, главная задача которого – сброс внутреннего давления в экстренных ситуациях.

В зависимости от формы корпуса изделия, выделяют цилиндрический и призматический виды литий-ионных аккумуляторов. Принцип устройства призматических моделей заключается в составлении друг на друга прямоугольных пластин, в то время как цилиндрические конструкции представлены рулонообразным пакетом электродов с сепаратором, которые закрыты в герметический корпус из металла (сталь, алюминий).

Разработчики аккумуляторных батарей сегодня часто экспериментируют с составом катода, стараясь добиться совершенствования параметров элемента питания без ущерба для его функциональности и долговечности.

Суть работы батареи на литии состоит в обеспечении оптимальных условий для перемещения ионов металла внутри системы (а точнее – между разнозаряженными электродами).

Вот как работает литий-ионный аккумулятор в стандартной ситуации:

  • когда на электроды подается напряжение определенной величины, это стимулирует ионы Li переходить из литиевого катода в угольный анод. Этот процесс сопровождается окислительной реакцией.
  • когда же в систему подается нагрузка, это заставляет ионы металла передвигаться в обратном направлении.

Однако, ввиду того, что при разряжении батареи, отрицательный электрод возвращается в норму не до конца, а параллельно с этим еще и накапливаются продукты окисления, то АКБ медленно, но уверенно лишается части своей емкости. В момент, когда фиксируется потеря 30 % объема батареи, говорят о завершении ее жизненного цикла.

Разновидности литиевых аккумуляторов

В современном мире существует огромное число модификаций литиевых аккумуляторных батарей. На данный момент наибольшее распространение в производстве получили только некоторые из них:

  • литий-железо-фосфатные, славящиеся износоустойчивостью, высокой термостабильностью, эксплуатационной безопасностью и длительным периодом работы;
  • литий-кобальтовые, выделяющиеся на фоне аналогов показательной удельной энергоемкостью, но малой термостабильностью и непродолжительным жизненным циклом;
  • литий-марганцевые, чье главное преимущество заключается в умеренной удельной энергоемкости, хотя и при низком сопротивлении;
  • литий-никель-кобальт-алюминий-оксидные с хорошей плотностью и энергоемкостью, многообещающей продолжительностью функционирования;
  • литий-титанатные, обеспечивающие быструю зарядку, хорошую производительность, способность не терять свою емкость при критических температурах;
  • литий-никель-марганец-кобальт-оксидные дают низкое внутреннее сопротивление, высокую удельную емкость.

Применяются аккумуляторы при создании разной продукции: Li-Co – в ноутбуках, смартфонах, видео- и фотокамерах, Li-Mn – в медтехнике и специнструментах, LiNiMnCoO2 – в электромобилях, электровелосипедах, телекоммуникациях, электростанциях, системах безопасности; LiFePO4 – в оборудовании, рассчитанном на большой ток нагрузки, LiTi – в уличном освещении, источниках бесперебойного питания, электротранспорте; LiNiCoAlO2 – в силовых агрегатах, медразработках.

Усовершенствованной версией литиевых батарей считаются полимерные АКБ, использующие гелеобразный, сухой или выполненный из полимерной матрицы, электролит. В таких устройствах электролит помещается на полимерную пленку, обеспечивающую хороший обмен ионами. Подобная конструкция обуславливает микроразмеры ячеек, безопасность их эксплуатации и простоту изготовления, что позволяет многим экспертам утверждать: за полимерными АКБ – будущее!

Как заряжаются Li-ion аккумуляторы

Разные аккумуляторы могут заряжаться неодинаковое количество времени. На этот параметр влияет не только их емкость, но и типы контроллеров, применяемых для восстановления заряда. Производители размещают контроллеры либо в зарядном блоке (тогда говорят об АКБ без защиты), либо внутри батареи (с защитой). В отдельных разработках контроллер даже встраивают внутрь аккумулятора.

Классический алгоритм восстановления заряда батареи Li ion выглядит следующим образом:

  • на первом этапе контроллер передает ток, величина которого составляет 10 % от номинального, за счет этого напряжение поднимается до 2,8 вольт;
  • далее ток заряда вырастает до номинального, что обуславливает рост напряжения до 4,2 вольта;
  • в конце процесса зарядки ток постепенно снижается при фиксированном напряжении 4,2 вольта.

Стоит иметь в виду, что оптимальным током зарядки для решения Li ion будет тот, который составляет 50 % от номинальной емкости батареи. Например, для аккумуляторной батареи с емкостью 2000 миллиампер-часов идеальным током будет ток, равный 1 Амперу.

Работая с элементами питания литиевого типа, рекомендуется придерживаться нескольких рекомендаций по зарядке:

  • после приобретения батареи и до начала ее эксплуатации требуется зарядить ее до 100 %;
  • стараться избегать зарядки и хранения аккумулятора при слишком высоких температурах;
  • заряжать устройство необходимо только с помощью оригинального блока питания и кабеля (оптимально – с индикацией заряда, чтобы не возникало перезарядки), соблюдая временные рамки, установленные производителем;
  • с целью сохранения ресурса АКБ нужно стараться не допускать полной ее разрядки;
  • если батарея использовалась на морозе или холоде, ее нельзя сразу ставить на зарядку, правильным будет подождать, пока она немного прогреется.

Оценить статью
Добавить комментарий