Лампа теслы своими руками

Лампа теслы своими руками

Содержание

О том, что физик Никола Тесла был гениальным изобретателем и значительно опередил свое время, слышали многие. К сожалению, по ряду причин большинство его изобретений так и не увидели свет. Но одно из самых неоднозначных – катушка Тесла, сохранилось до наших времен и нашло применение в медицине, военной отрасли и световых шоу.

Описание прибора

Если очень коротко, то катушка Тесла (КТ) – это резонансный трансформатор, создающий высокочастотный ток. Есть информация, что в своих экспериментах военные довели катушку до мощности в 1 Тгц.

Тут стоит затронуть такой вопрос – зачем Тесла ее изобрел? Согласно записям ученый работал над технологией беспроводной передачи электроэнергии. Вопрос крайне актуальный для всего человечества. В теории с помощью эфира две мощные КТ, размещенные в паре километров друг от друга, смогут передавать электричество. Для этого они должны быть настроены на одинаковую частоту. Также есть мнение, что КТ может стать своего рода вечным двигателем.

Внедрение данной технологии сделает все имеющиеся сегодня АЭС, ТЭС, ГЭС и прочие просто ненужными. Человечеству не придется сжигать твердые ископаемые, подвергаться риску радиационного заражения, перекрывать русла рек. Но ответ на вопрос, почему никто не развивает данную технологию, остается за конспирологами.

Принцип работы

Сегодня многие домашние электрики пытаются собрать КТ, при этом не всегда понимая принцип работы трансформатора Тесла, из-за чего терпят фиаско. На самом деле КТ недалеко ушла от обычного трансформатора.

Есть две обмотки – первичная и вторичная. Когда к первичной обмотке подводят переменное напряжение от внешнего источника, вокруг нее создается магнитное поле или, как его еще называют, колебательный контур. Когда заряд пробьет разрядник, через магнитное поле энергия начнет перетекать к вторичной обмотке, где будет образовываться второй колебательный контур. Часть накапливаемой в контуре энергии будет представлена напряжением. Ее величина будет прямо пропорциональна времени образования контура.

Читайте также:  Марка прочности кирпича м 150

Таким образом, в КТ имеется два связанных между собой колебательных контура, что и является определяющей характеристикой при сравнении с обычными трансформаторами. Их взаимодействие создает ионизирующий эффект, из-за чего мы видим стримеры (разряды молний).

Устройство катушки

Трансформатор Тесла, схема которого будет представлена ниже, состоит из двух катушек, тороида, защитного кольца и, конечно, заземления.

Необходимо рассмотреть каждый элемент в отдельности:

  • первичная катушка располагается в самом низу. К ней подводится питание. Она обязательно заземляется. Делается из металла с малым сопротивлением;
  • вторичная катушка. Для обмотки используют эмалированную медную проволоку примерно на 800 витков. Таким образом витки не расплетутся и не поцарапаются;
  • тороид. Данный элемент уменьшает резонансную частоту, накапливает энергию и увеличивает рабочее поле.
  • защитное кольцо. Представляет из себя незамкнутый виток медного провода. Устанавливается, если длина стримера больше длины вторичной обмотки;
  • заземление. Если включить незаземленную катушку, стримеры (разряды тока) не будут бить в воздух, а создадут замкнутое кольцо.

Самостоятельное изготовление

Итак, простейший способ изготовления катушки Теслы для чайников своими руками. Часто в интернете можно увидеть суммы, превышающие стоимость неплохого смартфона, но на деле трансформатор на 12V, который даст возможность насладиться включением светильника без использования розетки, можно собрать из кучи гаражного хлама.

Понадобится медная эмалированная проволока. Если эмалированной не найти, тогда дополнительно понадобится обычный лак для ногтей. Диаметр провода может быть от 0.1 до 0.3 мм. Чтобы соблюсти количество витков понадобиться около 200 метров. Намотать можно на обычную ПВХ-трубу диаметром от 4 до 7 см. Высота от 15 до 30 см. Также придется прикупить транзистор, например, D13007, пара резисторов и проводов. Неплохо было бы обзавестись кулером от компьютера, который будет охлаждать транзистор.

Теперь можно приступить к сборке:

  1. отрезать 30 см трубы;
  2. намотать на нее проволоку. Витки должны быть как можно плотнее друг к другу. Если проволока не покрыта эмалью, покрыть в конце лаком. Сверху трубы конец провода продеть через стенку и вывести наверх так, чтобы он торчал на 2 см выше поставленной трубы.;
  3. изготовить платформу. Подойдет обычная плита из ДСП;
  4. можно делать первую катушку. Нужно взять медную трубу 6 мм, выгнуть ее в три с половиной витка и закрепить на каркасе. Если диаметр трубки меньше, то витков должно быть больше. Ее диаметр должен быть на 3 см больше второй катушки. Закрепить на каркасе. Тут же закрепить вторую катушку;
  5. способов изготовления тороида довольно много. Можно использовать медные трубки. Но проще взять обычную алюминиевую гофру и металлическую перекладину для крепления на выпирающем конце проволоки. Если проволока слишком хлипкая, чтобы удержать тороид, можно использовать гвоздь, как на картинке ниже;
  6. не стоит забывать про защитное кольцо. Хотя если один конец первичного контура заземлить, от него можно отказаться;
  7. когда конструкция готова, транзистор соединяется по схеме, крепится к радиатору или кулеру, далее нужно подвести питание и монтаж окончен.

В качестве питания установки многие используют обычную крону Дюрасель.

Расчет катушки

Расчет КТ обычно производится при изготовлении трансформатора промышленной величины. Для домашних экспериментов достаточно использовать приведенные выше рекомендации.

Сам расчет подскажет оптимальное количество витков для вторичной катушки в зависимости от витков первой, индуктивность каждой катушки, емкость контуров и, самое важное, необходимую рабочую частоту трансформатора и емкость конденсатора.

Меры безопасности

Собрав КТ, перед запуском нужно принять некоторые меры предосторожности. Во-первых, нужно проверить проводку в помещении, где планируется подключение трансформатора. Во-вторых, проверить изоляцию обмоток.

Также стоит помнить, о простейших мерах предосторожности. Напряжение вторичной обмотки в среднем равняется 700А, 15А для человека уже смертельно. Дополнительно стоит подальше убрать все электроприборы, попав в зону работы катушки, они с большой вероятностью сгорят.

КТ ­– это революционное открытие своего времени, недооцененное в наши дни. Сегодня трансформатор Тесла служит лишь для развлечения домашних электриков и в световых представлениях. Сделать катушку можно самостоятельно из подручных средств. Понадобятся ПВХ труба, несколько сотен метров медного провода, пара метров медных труб, транзистор и пара резисторов.

На таймере 555 серии есть море интересных и простых радиолюбительских конструкций. Одной из таких конструкций является обратноходовый или однотактный преобразователь напряжения. Конструкция самого преобразователя достаточно проста и надежна в работе. Внутри микросхемы нет дополнительного усилителя по напряжению, поэтому выходной сигнал микросхемы нужно дополнительно усилить.

В качестве усилительного каскада использована комплементарная пара отечественных маломощных транзисторов серии КТ3102 и КТ3107, хотя можно и использовать более мощные пары, например КТ814 и КТ815, КТ816 и КТ817. Без усилителя, напряжения на выходе микросхемы может быть недостаточным для срабатывания полевого транзистора.
На конденсаторе 68нФ и резисторе 120 Ом собран фильтр для гашения обратного напряжения. Без фильтра может из строя выйти мосфет.

Резистор фильтра желательно использовать с мощностью 1-2 Ватт, его номинал можно отклонить в ту или иную сторону на 10%, на работу устройства это не повлияет.

Диод КД212 можно заменить на импортный быстродействующий диод серии UF4007.
В схеме можно использовать полевой транзистор IRF3205 илиIRL3705, заранее укрепленный на теплоотвод. В ходе работы резистор 120 Ом и полевой транзистор должны греться, это вполне нормально.

В качестве трансформатора использован строчник — трансформатор от строчной развертки отечественного телевизора, трансформатор буквально любой. Вторичная обмотка заводская, а первичную придется мотать самим — 5 витков провода с диаметром 1.5-2мм, для удобства обмотка намотана двумя жилами многожильного провода в силиконовой изоляции.

В качестве шара использована обыкновенная лампа накаливания (мощность не важна), лампы можно использовать как рабочие, так и вышедшие из строя.

Внимание! Не советуется долго играть с плазменным шаром, иногда температура дуги расплавляет стеклянную оболочку лампы, тогда вы рискуете получить удар тока в 2-4 киловольт и с нешуточной силой тока в 90 мА! Это может привести к очень серьезным последствиям. Ни в коем случае не дотрагивайтесь концов вторичной обмотки строчника, это смертельно опасно!

1. Работа со стеклом.

Стекло — очень необычный для того, кто не пробовал работать с его жидкой фазой материал. По стеклодувному делу есть довольно много неплохих книг, и для желающих попробовать свои силы можно неплохо изучить по ним матчасть. В применении к плазменному шару нам требуются два предмета: стеклянная трубка и шаровая химическая колба (важно: необходимо точное совпадение марок стекла! если колба пирекс, то трубка — тоже, если колба «жёлтая» (молибденовое стекло, скажем, С52), то трубка тоже. В противном случае растрескивание при остужении и провал всей работы почти неизбежны), а в качестве инструментов — графитовые палочки примерно 5-6 мм в диаметре, длинноносые пассатижи, хорошая пропановая горелка (необходим полновесный пропановый баллон хотя бы на 5 литров: все одноразовые мелкие баллоны не подойдут из-за требований к расходу газа и охлаждения баллона вследствие этого), способная прогреть достаточно большую рабочую область и водородная горелка, без которой я бы скорее всего не справился вообще (не знаю как работают без неё ортодоксальные стеклодувы, обходящиеся смесью природного газа и кислорода).

Работа со стеклом, включая изготовление электровакуумных приборов, довольно подробно описана в некоторых книгах, например в «Технике лабораторного эксперимента». Рекомендую её к изучению всем интересующимся.

2. Работа с вакуумом (более подробно можно прочесть в отдельной статье по ссылке).

3. Работа с электроникой.

Основная задача — обеспечить высокое напряжение высокой частоты и не очень большой мощности. С этим идеально справляется обычный однотактный генератор на 555 со строчником на выходе полевика, вот только одна проблема: для достижения большого напряжения у этой схемы необходим резонансный режим строчника, и резонанс должен достигаться на частотах в сотни килогерц, чтобы обеспечивать красивые разряды в шаре. Эту проблему пока решить так и не удалось, и приходится обходиться относительно низкими частотами — около 30-40 кГц.
На худой конец можно сделать просто блокинг-генератор или мультивибратор, но я тешу себя надеждой, что сумевший дойти уже до запитывания шара читатель может сделать ген на 555 таймере самостоятельно 😉
Неплохой идеей будет подключить к строчнику прерыватель: форма разрядов может изменяться очень интересным и непредсказуемым образом.

4. Работа с газами.

Самая интересная и неоднозначная область. Количество вариаций различных форм разряда, цветов и эффектов в разреженных газах совершенно неисчислимо; есть подозрение что сочетаниями можно получить почти любой цвет. Более того, в разных режимах работы источника напряжения газы могут вести себя и ионизироваться по-разному, часто непохоже на самих себя в других режимах.
Для напуска газов в систему необходимо изготовить напускатель. В общем случае это трубка, которая вставляется в разрыв шланга вакуумной системы. В трубку впаян нержавеющий капилляр, оканчивающийся краном-натекателем (кран с очень низкой и точно регулируемой пропускной способностью). По другую сторону крана расположен газовый баллон с соответствующим газом. Для плазмашара лучше изготовить два или три таких напускателя, чтобы иметь возможность напускать несколько разных газов одновременно. Естественно, вся конструкция напускателя должна быть герметичной относительно атмосферы, чтобы её можно было невозбранно вакуумировать.
Основные параметры, которые, по-видимому, влияют на характер разряда в шаре, таковы:
1) Частота источника напряжения. Чем она выше, тем легче происходит ионизация и тем мощнее накачка разряда.
2) Давление отдельного газа. Тот же неон может быть оранжевым, красным, белым, синим и розовым; ксенон — сине-белым, голубым, коричневым, зелёным или жёлтым при разных давлениях. Кроме того, тяжёлые газы — ксенон и криптон — имеют свойство шнуроваться при давлении выше некоторого критического.
3) Соотношение газов и примесей в смеси. Разумеется, можно смешивать газы, что будет влиять на лёгкость ионизации, цвет разряда и так далее. Например, небольшая добавка ксенона в неон приведёт к белым ксеноновым шнурам с красными окончаниями.
4) Плотность тока. В плазменном шаре она в основном определяется местом горения разряда: около потенциального электрода плотность тока максимальна, на краю сферы — минимальна. Это можно использовать для создания неравномерно окрашенных разрядных жгутов.

Возможных смесей и сочетаний газов неисчислимое множество, это область для исследований на годы, и я непременно попытаюсь привести свои знания к некой системе, когда накоплю достаточно материала, и опубликовать наработки. Пока что самое простое и понятное — чистые газы.
Чистые газы:
а) Ксенон . Самый тяжёлый из стабильных инертных газов, активно образует извивающиеся глистоподобные тентакли при давлении выше определённого. Наиболее красивый, дорогой и редкий. Нормальный цвет — сине-фиолетовый, при сильных разрежениях — коричнево-голубой. Загрязнения органикой и галоген-органикой придают зелёный оттенок. Чувствителен к загрязнениям и примесям в плане лёгкости ионизации.
б) Криптон . Сильно похож на ксенон, но хуже жгутуется, труднее ионизируется, более коричневого оттенка.
в) Неон . Ионизируется при атмосферном давлении, образуя красно-белые жгуты, при понижении давления (или плотности тока) — становится оранжевым, и в целом придаёт любой смеси красный, розовый или оранжевый оттенки. Сильно критичен к чистоте, даже небольшие примеси убивают как яркость свечения, так и оранжевость цвета разряда.
г) Азот . Фиолетово-красноватые разряды, сильно напоминает воздух (ещё бы, воздух на 3/4 и есть азот).
д) Аргон . Похож на азот, фиолетовый при малой плотности тока, более оранжевый, чем красный, при большей. Как и неон ионизируется при атмосфере, сильно улучшает ионизацию других газов даже в виде небольшой примеси к ним. Около атмосферного давления приобретает ярко-голубо-белый цвет.

Самый простой и неэкономный способ смешивать газы внутри шара — просто напускать в откачанный шар много какого-либо газа, после чего попеременно откачивать избытки или добавлять второй газ. Все измерения только качественные, на основании формы разряда, но это лучше, чем ничего.

После получения требуемых эффектов внутри плазмашара остаётся только его отпаять, аккуратно заплавив и пережегши сосок штенгеля. Необходимые подробности процедуры описаны в литературе или разрабатываются самостоятельно с опытом; упомяну только, что стекло имеет некоторую инерционность в плане вязкости, и если нагреть отвакуумированный сосуд слишком сильно, он просто впячится в месте перегрева внутрь пузырём и лопнет, разрушив все труды. Поэтому греть следует очень, очень неспеша и аккуратно. Процедура отжига стандартная. Если всё сделано верно, можно радоваться успешному изготовлению настоящего плазменного шара на коленке, причём значительно более красивого и качественного, чем заводской хлам.

Ссылки по теме:

http://www.personal.psu.edu/sdb229/Plasma%20ball%20colors.html — неплохое описание цветов газов и смесей в плазменном шаре
http://www.youtube.com/user/nerodesign000 — огромные плазменные шары музейного качества
http://www.youtube.com/user/StandingWulf — химик-энтузиаст, ищущий красивые смеси газов под плазмашары
http://www.strattman.com/products/plasma/index.html — современные производители плазменной скульптуры. Ценники приводят в тихий ужас, но оно явно себя оправдывает.

01.10.12 Недавно сделал питальник к синему шару. Теперь он может быть просто воткнут в розетку и работать как обычные плазмашары. Смотрим видео!

Оценить статью
Добавить комментарий