Назовите погрешность характеризующую класс точности прибора

Назовите погрешность характеризующую класс точности прибора

Содержание

Конспект КСР1 (п. 8)

КЛАССЫ ТОЧНОСТИ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Класс точности измерительного прибора — это характеристика, определяемая нормированными предельными значениями погрешности средства измерений.

Способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ 8.401-80.

Способы нормирования допускаемых погрешностей:

— по абсолютной погрешности,

— по относительной погрешности,

— по приведенной погрешности – по длине или верхнему пределу шкалы прибора.

Обозначения классов точности измерительных приборов:

арабскими цифрами без условных знаков — класс точности определяется пределами приведённой погрешности, в качестве нормирующего значения используется наибольший по модулю из пределов измерений.

арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы.

По приведенной погрешности приборы делятся на классы: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0.

Приборы класса точности 0,05; 0,1; 0,2; 0,5 применяются для точных лабораторных измерений и называются прецизионными.

В технике применяются приборы классов 1,0; 1,5: 2,5 и 4,0 (технические).

Если на шкале такого обозначения нет, то данный прибор внеклассный, то есть его приведенная погрешность превышает 4%.

арабскими цифрами в кружке — класс точности определяется пределами относительной погрешности.

латинскими буквами, то класс точности определяется пределами абсолютной погрешности.

Когда на приборе класс точности не указан, абсолютная погрешность принимается равной половине цены наименьшего деления. При считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Пример: вольтметр, диапазон измерений 0 — 30 В, класс точности 1,0 определяет, указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В. Соответственно, среднее квадратичное отклонение s прибора составляет 0,1 В.

Относительная погрешность результата зависит от значения напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1 — 0,5 В.

В результате воздействия большого числа факторов, влия­ющих на изготовление и эксплуатацию средств измерений, по­казания приборов отличаются от истинных значений измеряе­мых ими величин. Эти отклонения характеризуют погрешность средств измерений. Погрешности СИ в отличие от погрешности измерений имеют другую физическую природу, так как они от носятся к СИ, с помощью которого осуществляют измерение. Они являются лишь составной частью погрешности измерения.

Классификация погрешностей средств измерений в зависи­мости от разных признаков:

Погрешности измерительных средств
От характера проявления От условий применения От режима применения От формы представления От значения измеряемой величины
— систематическая -случайная — основная — дополнительная — статическая — динамическая — абсолютная -относительная -приведенная — аддитивная — мультипликативная — линейности -гистерезиса

В понятия абсолютной, относительной, систематической и случайной погрешностей вкладывается тот же смысл, что и в понятия погрешностей измерений.

Приведенная погрешность средства измерений равна отноше­нию абсолютной погрешности прибора ΔХ к некоторому норми­рующему значению XN :

Таким образом, приведенная погрешность является разновид­ностью относительной погрешности прибора. В качестве норми­рующего значения XN принимают диапазон измерений, верх­ний предел измерений, длину шкалы и др.

Основная погрешность — погрешность средства измерений, используемого в нормальных условиях. При эксплуатации СИ на производстве возникают значительные отклонения от нор­мальных условий, вызывающие дополнительные погрешности.

Нормальными условиями для линейных измерений считают­ся:

• температура окружающей среды 20°С

• атмосферное давление 101325 Па (760 мм рт.ст.)

• относительная влажность окружающего воздуха 58%

• ускорение свободного падения 9,8 м/с

• направление линии и плоскости измерения — горизонтальное

• относительная скорость движения внешней воздушной среды равна нулю.

В тех случаях, когда средство измерения применяется для измерения постоянной или переменной во времени величины, для его характеристики используют понятия статическая и динамическая погрешности соответственно. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и его статической погрешностью, равной значению величины в данный момент времени. Динами­ческие погрешности возникают вследствие инерционных свойств средств измерения.

Для рассмотрения зависимости погрешности средства измерения от значения измеряемой величины используют понятие номинальной и реальной функций преобразования — соответствен­но Y = (Х) и Y = fр(X).

Номинальная функция преобразования приписана измери­тельному устройству, указывается в его паспорте и используется при выполнении измерений.

Реальной функцией преобразования называют ту, которой обладает конкретный экземпляр СИ дан­ного типа.

Реальная функция преобразования имеет отклонение от но­минальной функции и связана со значением измеряемой вели­чины. Систематическую погрешность в функции измеряемой величины можно представить в виде суммы погрешности схемы, определяемо самой структурной схемой средства измерений, и технологических погрешностей, обусловленных погрешностями изготовления его элементов. Технологические погрешности принято разделять на аддитивную, мультипликативную, гистерезиса и линейности.

Аддитивной погрешностью (получаемой путем сложения), или погрешностью нуля, называют погрешность, которая оста­ется постоянной при всех значениях измеряемой величины.

Мультипликативная погрешность (получаемая путем умно­жения), или погрешность чувствительности СИ, линейно воз­растает или убывает с изменением измеряемой величины. В большинстве случаев аддитивная и мульти­пликативная составляющие присутствуют одновременно.

Погрешность гистерезиса, или Погрешность обратного хода, выражается в несовпадении реальной функции преобразования при увели­чении (прямой ход) и уменьшении (обратный ход) измеряемой величины. Если взаимное распо­ложение номинальной и реальной функций преобразования средства измерений вызвано нелинейностью, то эту погрешность называют погрешностью линейности.

Аддитивная и мультипликативная погрешности Погрешность гистерезиса Погрешность линейности

В разных точках диапазона средств измерений погрешность может принимать различные значе­ния. В этом случае необходимо нор­мировать пределы допускаемых по­грешностей, т.е. устанавливать грани­цы, за пределы которых погрешность не должна выходить ни при изготовлении, ни в процессе эксплуатации. Для этого служит класс точности СИ.

Класс точности — это обобщенная характеристика, определяемая пре­делами допускаемых основных и до­полнительных погрешностей, а также другими свойствами, влия­ющими на точность, значения кото­рых устанавливают в стандартах на отдельные виды средств измерений.

Способы установления классов точности изложены в ГОСТ 8.401 “ГСИ. Классы точности средств измерения. Общие требования”. Стандарт не распространяется на средства измерений, для которых предусматриваются раздельные нормы на систематическую и случайные составляющие, а также на средства измерений, для которых нормированы номинальные функции влияния, а измерения проводятся без введения поправок на влияющие величины. Классы точности не устанавливаются и на средства измерений, для которых существенное значение имеет динамическая погрешность.

Класс точности не является непо­средственным показателем точности измерений, так как точность изме­рений зависит еще от метода и ус­ловий измерений.

В зависимости от вида погреш­ности средства измерений существу­ет несколько способов нормирования погрешности.

Если аддитивная погрешность СИ преобладает над мультипликативной, удобнее нормировать абсолютную или приведенную погрешности соответственно:

Нормирование по абсолютной погрешности не позволяет срав­нивать по точности приборы с разными диапазонами измерений, поэтому принято нормировать приведенную погрешность, где р — отвлеченное положительное число, выбираемое из ряда

(1,5; 2; 2,5; 4; 5; 6) 10* (п = 1, О, — 1, — 2 и т.д.);

XN — нормирующее значение, равное конечному значению шкалы прибора, диапазону измерений или длине шкалы, если она нелинейная.

Если мультипликативная погрешность преобладает над адди­тивной, то нормируется предел допускаемой относительной по­грешности:

где q — отвлеченное положительное число, выбираемое из ряда, приведенного для р.

При одновременном проявлении аддитивной и мультиплика­тивной погрешностей нормируется предел относительной или аб­солютной погрешностей, определяемых формулами соответствен­но:

,

где Хк — конечное значение шкалы прибора; с и d — положи­тельные числа, выбираемые из ряда, приведенного для р; Xизм — значение измеряемой величины на входе(выходе) средств измерений или число делений, отсчитанных по шкале; а и b положительные числа, не зависящие от Xизм.

Обозначение классов точности в документации и на средствах измерений приведены в табл.

Если пределы допускаемой погрешности средств измерений задаются в виде графиков, таблиц или в сложной форме, то классы точности обозначаются римскими цифрами или прописными буквами латинского алфавита.


Регулировка и градуировка средств измерений

В большинстве случаев в измерительном приборе (преобразователе) можно найти или предусмотреть такие элементы, вариация параметров которых наиболее заметно сказывается на его систематической погрешности, главным образом погрешности схемы, аддитивной и мультипликативной погрешностях.

В общем случае в конструкции измерительного прибора должны быть предусмотрены два регулировочных узла: регулировка нуля и регулировка чувствительности. Регулировкой нуля уменьшают влияние аддитивной погрешности, постоянной для каждой точки шкалы, а регулировкой чувствительности уменьшают мультипликативные погрешности, меняющиеся линейно с изменением измеряемой величины. При правильной регулировке нуля и чувствительности уменьшается и влияние погрешности схемы прибора. Кроме того, некоторые приборы снабжаются устройствами для регулировки погрешности схемы (пружинные манометры).

Таким образом, под регулировкой средств измерения понимается совокупность операций, имеющих целью уменьшить основную погрешность до значений, соответствующих пределам ее допускаемых значений, путем компенсации систематической составляющей погрешности средств измерений, т.е. погрешности схемы, мультипликативной и аддитивной погрешностей.

Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам, для составления градуировочных кривых или таблиц.

Различают следующие способы градуировки:

использование типовых (печатных) шкал, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора;

индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейна или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений. Индивидуальную градуировку проводят в следующем порядке. На предварительно отрегулированном приборе устанавливают циферблат с еще не нанесенными отметками. К измерительному прибору подводят последовательно измеряемые величины нескольких наперед заданных или выбранных значений. На циферблате нанося отметки, соответствующие положениям указателя при этих значениях измеряемо величины, а расстояния между отметками делят на равные части. При индивидуальной градуировке систематическая погрешность уменьшается во всем диапазоне измерения, а в точках, полученных при градуировке, она достигает значения, равного погрешности обратного хода;

градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. Градуировка шкалы состоит в определении при помощи образцовых мер или измерительных приборов значений измеряемой величины соответствующих некоторым отметкам, нанесенным на ней. В результате определяют зависимость числа делений шкалы, пройденных указателем, от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика. Если необходимо избавиться и от погрешности обратного хода. Градуировку осуществляют раздельно при прямом и обратном ходе.

Общие сведения об измерениях. Погрешности измерений и средств измерений

Общие сведения об измерениях

Измерение – нахождение значения физической величины опытным путем с помощью специальных технических средств. Под измерением понимается процесс экспериментального сравнения данной физической величины с однородной физической величиной, значение которой принято за единицу.

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера.

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительные приборы классифицируются по различным признакам. Например, измерительные приборы можно построить на основе аналоговой схемотехники или цифровой. Соответственно их делят на аналоговые и цифровые. Ряд приборов, выпускаемых промышленностью, допускают только отсчитывание показаний. Эти приборы называются показывающими. Измерительные приборы, в которых предусмотрена регистрация показаний, носят название регистрирующих.

Погрешности измерений

Погрешность является одной из основных характеристик средств измерений.

Под погрешностью электроизмерительных приборов, измерительных преобразователей и измерительных систем понимается отклонение их выходного сигнала от истинного значения входного сигнала.

Абсолютная погрешность Δa прибора есть разность между показанием прибора ах и истинным значением а измеряемой величины, т.е.

Абсолютная погрешность, взятая с обратным знаком, называется поправкой.

Относительная погрешность δ представляет собой отношение абсолютной погрешности к истинному значению измеряемой величины. Относительная погрешность, обычно выражаемая в процентах, равна

Приведенная погрешность γП есть выраженное в процентах отношение абсолютной погрешности Δa к нормирующему значению апр

Нормирующее значение – условно принятое значение, могущее быть равным конечному значению диапазона измерений (предельному значению шкалы прибора).

Погрешности средств измерений

Класс точности прибора указывают просто числом предпочтительного рода, например, 0,05. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Класс точности прибора (например, амперметра) дается выражением

При установлении классов точности приборов нормируется приведенная погрешность, а не относительная. Причина этого заключается в том, что относительная погрешность по мере уменьшения значений измеряемой величины увеличивается.

По ГОСТ 8.401-80 в качестве значений класса точности прибора используется отвлеченное положительное число из ряда:

В интервале от 1 до 100 можно использовать в качестве значений класса точности числа:

(α = 0) 1; 1,5; 2; 2,5; 4; 5; 6;

(α = 1) 10; 15; 20; 25; 40; 50; 60.

Т.е. четырнадцать чисел 1; 1,5; 2; 2,5; 4; 5; 6; 10; 15; 20; 25; 40; 50; 60.

Необходимо отметить, классы точности от 6,0 и выше считаются очень низкими.

Примеры решения задач

Задача №1

Определить для вольтметра с пределом измерения 30 В класса точности 0,5 относительную погрешность для точек 5, 10, 15, 20, 25 и 30 В и наибольшую абсолютную погрешность прибора.

Решение

  1. Класс точности указывают просто числом предпочтительного рода, например, 0,5. Это используют для измерительных приборов, у которых предел допускаемой приведенной погрешности постоянен на всех отметках рабочей части его шкалы (присутствует только аддитивная погрешность). Таким способом обозначают классы точности вольтметров, амперметров, ваттметров и большинства других однопредельных и многопредельных приборов с равномерной шкалой.

Приведенная погрешность (выраженное в процентах отношение абсолютной погрешности к нормирующему значению)

постоянна и равна классу точности прибора.

Относительная погрешность однократного измерения (выраженное в процентах отношение абсолютной погрешности к истинному значению измеряемой величины)

уменьшается к значению класса точности прибора с ростом измеренного значения к предельному значению шкалы прибора.

Абсолютная погрешность однократного измерения

постоянна на всех отметках рабочей части шкалы прибора.

По условию задачи: Uизм = Ui = 5, 10, 15, 20, 25 и 30 В – измеренное значение электрической величины; Uпр = 30 В – предел шкалы вольтметра.

Наибольшая абсолютная погрешность вольтметра

Класс точности — обобщённая характеристика средств измерений, определяемая пределами допускаемых основных и дополнительных погрешностей, а также рядом других свойств, влияющих на точность осуществляемых с их помощью измерений.

Погрешность может нормироваться, в частности, по отношению к:

  • результату измерения (по относительной погрешности)

в этом случае, по ГОСТ 8.401-80 (взамен ГОСТ 13600-68), цифровое обозначение класса точности (в процентах) заключается в кружок.

  • длине (верхнему пределу) шкалы прибора (по приведенной погрешности).

Для стрелочных приборов принято указывать класс точности, записываемый в виде числа, например, 0,05 или 4,0. Это число дает максимально возможную погрешность прибора, выраженную в процентах от наибольшего значения величины, измеряемой в данном диапазоне работы прибора. Так, для вольтметра, работающего в диапазоне измерений 0—30 В, класс точности 1,0 определяет, что указанная погрешность при положении стрелки в любом месте шкалы не превышает 0,3 В.

Относительная погрешность результата, полученного с помощью указанного вольтметра, зависит от значения измеряемого напряжения, становясь недопустимо высокой для малых напряжений. При измерении напряжения 0,5 В погрешность составит 60 %. Как следствие, такой прибор не годится для исследования процессов, в которых напряжение меняется на 0,1—0,5 В.

Обычно цена наименьшего деления шкалы стрелочного прибора согласована с погрешностью самого прибора. Если класс точности используемого прибора неизвестен, за погрешность s прибора всегда принимают половину цены его наименьшего деления. Понятно, что при считывании показаний со шкалы нецелесообразно стараться определить доли деления, так как результат измерения от этого не станет точнее.

Следует иметь в виду, что понятие класса точности встречается в различных областях техники. Так, в станкостроении имеется понятие класса точности металлорежущего станка, класса точности электроэрозионных станков (по ГОСТ 20551).

Обозначения класса точности могут иметь вид заглавных букв латинского алфавита, римских цифр и арабских цифр с добавлением условных знаков. Если класс точности обозначается латинскими буквами, то класс точности определяется пределами абсолютной погрешности. Если класс точности обозначается арабскими цифрами без условных знаков, то класс точности определяется пределами приведённой погрешности и в качестве нормирующего значения используется наибольший по модулю из пределов измерений. Если класс точности обозначается арабскими цифрами с галочкой, то класс точности определяется пределами приведённой погрешности, но в качестве нормирующего значения используется длина шкалы. Если класс точности обозначается римскими цифрами, то класс точности определяется пределами относительной погрешности.

Аппараты с классом точности 0,5 (0,2) проходят метрологические испытания с 5 % загрузки, а 0,5s (0,2s) уже с 1 % загрузки. [1]

Класс точности измерительного прибора — это обобщенная характеристика, определяемая пределами допускаемых основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых установлены в стандартах на отдельные виды средств измерений. Класс точности средств измерений характеризует их свойства в отношении точности, но не является непосредственным показателем точности измерений, выполняемых при помощи этих средств.

Для того чтобы заранее оценить погрешность, которую внесет данное средство измерений в результат, пользуются нормированными значениями погрешности . Под ними понимают предельные для данного типа средства измерений погрешности.

Погрешности отдельных измерительных приборов данного типа могут быть различными, иметь отличающиеся друг от друга систематические и случайные составляющие, но в целом погрешность данного измерительного прибора не должна превосходить нормированного значения. Границы основной погрешности и коэффициентов влияния заносят в паспорт каждого измерительного прибора.

Основные способы нормирования допускаемых погрешностей и обозначения классов точности средств измерений установлены ГОСТ.

На шкале измерительного прибора маркируют значение класса точности измерительного прибора в виде числа, указывающего нормированное значение погрешности. Выраженное в процентах, оно может иметь значения 6; 4; 2,5; 1,5; 1,0; 0,5; 0,2; 0,1; 0,05; 0,02; 0,01; 0,005; 0,002; 0,001 и т. д.

Если обозначаемое на шкале значение класса точности обведено кружком, например 1,5, это означает, что погрешность чувствительности δ s =1,5%. Так нормируют погрешности масштабных преобразователей (делителей напряжения, измерительных шунтов, измерительных трансформаторов тока и напряжения и т. п.).

Это означает, что для данного измерительного прибора погрешность чувствительности δ s= d x/x — постоянная величина при любом значении х. Граница относительной погрешности δ (х) постоянна и при любом значении х просто равна значению δ s, а абсолютная погрешность результата измерений определяется как d x= δ sx

Для таких измерительных приборов всегда указывают границы рабочего диапазона, в которых такая оценка справедлива.

Если на шкале измерительного прибора цифра класса точности не подчеркнута, например 0,5, это означает, что прибор нормируется приведенной погрешностью нуля δ о=0,5 %. У таких приборов для любых значений х граница абсолютной погрешности нуля d x= d о=const, а δ о= d о/хн.

При равномерной или степенной шкале измерительного прибора и нулевой отметке на краю шкалы или вне ее за хн принимают верхний предел диапазона измерений. Если нулевая отметка находится посредине шкалы, то хн равно протяженности диапазона измерений, например для миллиамперметра со шкалой от -3 до +3 мА, хн= 3 — (-3)=6 А.

Однако будет грубейшей ошибкой полагать, что амперметр класса точности 0,5 обеспечивает во всем диапазоне измерений погрешность результатов измерений ±0,5 %. Значение погрешности δ о увеличивается обратно пропорционально х, то есть относительная погрешность δ (х) равна классу точности измерительного прибора лишь на последней отметке шкалы (при х = хк). При х = 0,1хк она в 10 раз больше класса точности. При приближении х к нулю δ (х) стремится к бесконечности, то есть такими приборами делать измерения в начальной части шкалы недопустимо.

На измерительных приборах с резко неравномерной шкалой (например на омметрах) класс точности указывают в долях от длины шкалы и обозначают как 1,5 с обозначением ниже цифр знака "угол".

Если обозначение класса точности на шкале измерительного прибора дано в виде дроби (например 0,02/0,01), это указывает на то, что приведенная погрешность в конце диапазона измерений δ прк = ±0,02 %, а в нуле диапазона δ прк = -0,01 %. К таким измерительным приборам относятся высокоточные цифровые вольтметры, потенциометры постоянного тока и другие высокоточные приборы. В этом случае

δ (х) = δ к + δ н (хк/х — 1),

где хк — верхний предел измерений (конечное значение шкалы прибора), х — измеряемое значение.

Читайте также:  Крепление деревянных балок к кирпичной стене
Оценить статью
Добавить комментарий