Назначение и типы фильтров

Назначение и типы фильтров

Содержание

В цепях радиотехнических устройств обычно одновременно протекают токи самых различных частот: от очень высоких радиочастот до низких (звуковых частот и даже до тока нулевой частоты, т.е. постоянного тока). Обычно токи некоторых из этих частот должны воздействовать на последующие элементы схемы, воздействие же токов других частот является вредным, так как нарушает нормальную работу аппаратуры. Поэтому возникает необходимость в отделении токов одних частот от токов других частот. Эта задача решается с помощью специальных устройств, называемых электрическими фильтрами.

В зависимости от того, какие из частот пропускаются (выделяются) фильтром для передачи в последующую цепь, электрические фильтры разделяются на фильтры нижних или верхних частот. Применяются также полосовые фильтры, задачей которых является пропускание лишь токов с частотами, лежащими в пределах заданной полосы от f1 до f2, и заградительные фильтры, не пропускающие токи с частотами, лежащими в пределах определенной полосы частот. Фильтры нижних частот делятся на две основные группы: фильтры, предназначенные пропускать токи низких звуковых частот, и фильтры к источникам питания постоянного тока, предназначенные пропускать лишь постоянный ток.

Основные виды

Режим работы выпрямителя в значительной степени определяется типом фильтра, включенного на его выходе. В маломощных выпрямителях, питающихся от однофазной сети переменного тока, применяются простейшие емкостные фильтры, в выпрямителях средней и большой мощности — Г-образные LC, RC и П-образные CLC и CRC фильтры.

Основным параметром сглаживающих фильтров является коэффициент сглаживания (q), который определяется как отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на его выходе (на нагрузке).

Емкостный фильтр является наиболее простым из всех видов сглаживающих фильтров. Он состоит из конденсатора, включаемого параллельно нагрузке. Анализ работы данного фильтра проведен при описании однофазного однополупериодного выпрямителя. Коэффициент пульсаций напряжения на выходе выпрямителя с емкостным фильтром может быть найден по формуле:

Читайте также:  Насосы для промывки канализации

где m зависит от схемы выпрямителя:

m=2 для однофазного двухполупериодного и мостового выпрямителей), f — частота входного переменного напряжения.

Из приведенной формулы видно, что коэффициент пульсаций на выходе выпрямителя с емкостным фильтром обратно пропорционален емкости применяемого конденсатора и величине сопротивления нагрузки. Поэтому применение такого фильтра рационально только при достаточно больших значениях этих величин. По мере совершенствования технологии изготовления конденсаторов большой емкости рассматриваемый тип фильтра вследствие своей простоты и эффективности находит все большее применение.

Индуктивно-емкостные фильтры (Г-образные LC и П-образные CLC) широко применяются при повышенных токах нагрузки, поскольку падение напряжения на них можно сделать сравнительно небольшим. Коэффициент полезного действия у таких фильтров достаточно высокий. К недостаткам индуктивно-емкостных фильтров относятся: большие габаритные размеры и масса, повышенный уровень электромагнитного излучения от элементов фильтра, сравнительно высокая стоимость и трудоемкость изготовления.

Наиболее широко используется Г-образный индуктивно-емкостный фильтр (рис. 3.4-13).

Для эффективного сглаживания пульсаций таким фильтром необходимо выполнение следующих условий: XC=1ωC >XC.

При их выполнении, пренебрегая потерями в дросселе, для коэффициента сглаживания можно записать:

где m зависит от схемы выпрямителя:

m=1 для однофазного однополупериодного выпрямителя,

m=2 для однофазного двухполупериодного и мостового выпрямителей).

Во избежание резонансных явлений в фильтре необходимо выбирать q>3. Кроме этого, одним из основных условий является обеспечение явно выраженной индуктивной реакции фильтра на выпрямитель, необходимой для большей стабильности внешней характеристики выпрямителя. При индуктивной реакции фильтра меньше действующие значения токов в вентилях и обмотках трансформатора (а следовательно, меньше и требуемая габаритная мощность трансформатора). Для обеспечения индуктивной реакции необходимо, чтобы:

П-образный CLC фильтр отличается от описанного Г-образного LC фильтра наличием еще одной емкости, включаемой на входе фильтра (на рис. 3.4-13 конденсатор C0, показан пунктиром). Расчет таких фильтров производят в два этапа, сначала рассчитывают емкость конденсатора C0, исходя из допустимой величины пульсации напряжения на нем, затем по приведенным выше формулам рассчитывают Г-образное звено. Наибольший коэффициент сглаживания в П-образном фильтре достигается при C0=C1.

При выборе конденсаторов фильтра необходимо следить за тем, чтобы они были рассчитаны на напряжение на 15-20% превышающее напряжение холостого хода выпрямителя при максимальном напряжении сети (чтобы учесть перенапряжения, возникающие при включении выпрямителя). Необходимо также, чтобы амплитуда переменной составляющей напряжения на них не превышала предельно допустимого значения.

Резистивно-емкостные фильтры целесообразно применять при малых токах нагрузки (менее 10-15 мА) и небольших требуемых коэффициентах сглаживания. Достоинства этих фильтров — малые габариты и масса, низкая стоимость. Недостаток — сравнительно большое падение напряжения на фильтре (что снижает КПД устройства выпрямления в целом).

Простейший Г-образный RC фильтр (рис. 3.4-14) состоит из балластного резистора (Rф) и конденсатора (C_1). Коэффициент сглаживания такого фильтра вычисляется по формуле:

q = mωCRнRфRн + Rф,

где m зависит от схемы выпрямителя:

(m=1 для однофазного однополупериодного выпрямителя, m=2 для однофазного двухполупериодного и мостового выпрямителей).

Сопротивление фильтра (Rф) выбирают из условия допустимого падения напряжения на фильтре или исходя из заданного КПД (h) по формуле Rф=Rн(1–h)/h. Оптимальным считается КПД порядка 0,6-0,8.

Расчет П-образного резистивно-емкостного фильтра (его схема включает дополнительный конденсатор C0, показанный на рис. 3.4-14 пунктиром) производится, как и в случае П-образного CLC фильтра, в два этапа после разделения этого фильтра на емкостный (C0) и Г-образный LC1 фильтр.

Комбинированные фильтры применяются при необходимости получения больших коэффициентов сглаживания на выходе выпрямителя. Они представляют собой последовательное включение нескольких фильтров. При этом могут использоваться как однотипные, так и разнотипные звенья. При каскадном включении LC фильтров можно считать, что суммарный коэффициент сглаживания (qΣ) равен произведению коэффициентов сглаживания составляющих фильтр звеньев: qΣ=q1 ⋅q2 ⋅q3.

Для нахождения оптимального числа звеньев (nопт) такого фильтра при заданном qΣ можно воспользоваться формулой:

Высокий коэффициент сглаживания и хороший КПД могут также обеспечить разнообразные фильтры на транзисторах.

Принцип действия

Электрофильтр — устройство, предназначенное для очистки технологических газов и аспирационного воздуха от находящихся в них взвешенных частиц посредством воздействия электрического поля.

Процесс улавливания взвесей в электрофильтре можно условно разделить на несколько этапов:

— зарядка взвешенных частиц;

— движение заряженных частиц к электродам;

— осаждение заряженных частиц на электродах;

— регенерация электродов — удаление с поверхности электродов уловленных частиц;

— удаление уловленной пыли из бункерной части

При прохождении пылегазовой среды через активную зону электрофильтра взвешенные частицы (аэрозоли) попадают в зону действия коронного разряда в неоднородном электродном поле.

При определенной величине напряжения, приложенного к межэлектродному промежутку, напряженность поля около коронирующего электрода становится достаточной для появления коронного разряда, следствием которого является заполнение внешней части межэлектродного промежутка в основном отрицательно заряженными ионами. Отрицательно заряженные ионы под действием сил электрического поля движутся от коронирующих электродов к осадительным. Взвешенные частицы, находящиеся в потоке, в результате адсорбции на их поверхности ионов, приобретают в межэлектродном промежутке электрический заряд и под влиянием сил электрического поля движутся к электродам, на поверхности которых и осаждаются.

Уловленные частицы периодически удаляются с электродов с помощью механизмов встряхивания, попадают в бункеры, расположенные под электродной системой, и через них выводятся из электрофильтра

Электронные усилители. Классификация. Основные характеристики усилителей

Электронные усилители. Классификация

Существует несколько способов классификации усилителей. Мы будем рассматривать только электронные усилители, которые, в свою очередь, классифицируются по следующим параметрам.

1. По усиливаемому параметру (величине) электрического сигнала: ЭУ напряжения, тока или мощности.

Следует заметить, что любой усилитель (напряжения или тока) является усилителем мощности, которую можно получить на выходе при большом напряжении и малом токе, так и наоборот – большом токе и малом напряжении. Очевидно, что такая классификация усилителей определяется по наиболее выраженной отдаче в нагрузку соответственно напряжения, тока или мощности.

Следует также помнить, что повышать величину тока или напряжения возможно и с помощью трансформатора, однако, в отличие от усилителя трансформатор мощность не усиливает, а является лишь преобразователем напряжения или тока при неизменной мощности.

2. По полосе и значению усиливаемых частот входного сигнала: усилители постоянного тока (УПТ), усилители низкой, высокой, промежуточной частот (УНЧ, УВЧ, УПЧ), а также узкополосные и широкополосные усилители (УПУ и ШПУ).

Так как полоса усиливаемых частот определяется видом нагрузки (резонансный контур или резистивная нагрузка), то в этой классификационной группе ЭУ различают резонансные и апериодические усилители.

3. По характеру и виду усиливаемого сигнала: ЭУ непрерывных сигналов (гармонических или квазигармонических, у которых сигнал медленно меняется во времени) и ЭУ импульсных сигналов, в которых импульсный сигнал прямоугольный, пилообразный и других форм меняется во времени настолько быстро, что форма выходного сигнала полностью определяется процессом установления колебаний в усилителе, т.е. переходным процессом.

4. По виду используемого усилительного прибора: ламповые, транзисторные, тиристорные, квантовые, парамагнитные (на СВЧ вакуумных приборах – клистронах, магнетронах, лампах бегущей волны – ЛБВ) и другие.

5. По виду амплитудной характеристики (зависимости выходного напряжения или тока от входной величины): линейные, логарифмические, усилители – ограничители и т.д.
Существует и ряд других классификаций внутри перечисленных классификационных групп, отражающих схемы включения УП и режимы его работы, например, усилители с общей базой (ОБ), общим эмиттером (ОЭ), общим коллектором (ОК), функционирующие в режимах А, В, АВ, С и других режимах. А также усилители с обратной связью, распределённым усилением т.д.

Для полной характеристики усилителя обычно используют совместные признаки, например, транзисторный усилитель мощности низкой частоты на БПТ по схеме с ОЭ.

Не нашли то, что искали? Воспользуйтесь поиском:

Под электрическими фильтрами — понимают четырехполюсники, включаемые между источником писания и приемником (нагрузкой), назначение которых состоит в том, чтобы беспрепятственно (без затухания) пропускать к приемнику токи одних частот и задерживать или пропускать, но с большим затуханием, токи других частот.

Диапазон частот, пропускаемых фильтром без затухания, называют полосой прозрачности; диапазон частот, пропускаемых с затуханием, — полосой затухания.

Электрические фильтры собирают обычно из индуктивных катушек и конденсаторов. Исключение составляют -фильтры (см. § 5.6 — 5.9). Фильтры используют главным образом в радиотехнике технике связи, где применяют токи довольно высоких частот.

При высоких частотах индуктивные сопротивления индуктивных катушек во много раз больше их активных сопротивлений. Поэтому будем полагать, что активные сопротивления индуктивных катушек и активная проводимость конденсаторов равны нулю, т. е. что фильтры составлены только из идеальных реактивных элементов.

Фильтры обычно собирают по симметричной Т- или П-схеме (см. рис. 4.4, а, б), т. е. при .

При изучении фильтров будем пользоваться понятием коэффициента затухания и коэффициента фазы (см. § 4.10).

Условимся сопротивление Z, в схеме рис. 4.4, а и сопротивление в схеме рис. 4.4, б называть продольными, а сопротивление в схеме рис. 4.4, а и сопротивление в схеме рис. 4.4, б — поперечными.

Фильтры, в которых произведение продольного сопротивления на соответствующее поперечное сопротивление представляет собой некоторое постоянное для данного фильтра число (число k), не зависящее от частоты, принято называть -фильтрами.

Сопротивление нагрузки , присоединяемой на выходе фильтра, должно быть согласовано с характеристическим сопротивлением фильтра Входное сопротивление -фильтра при этом также равно . В -фильтрах существенно изменяется в зависимости от частоты а), находящейся в полосе прозрачности. Это обстоятельство вызывает необходимость изменять сопротивление нагрузки в функци частоты (особенно при приближении к границе полосы прозрачности), что нежелательно. В -фильтрах при определенных значениях коэффициента m сопротивление мало изменяется от частоты (в пределах полосы прозрачности) и поэтому нагрузка практически может быть одна и та же по модулю для различных а), находящихся в этих пределах.

Качество фильтра тем выше, чем более резко выражены его фильтрующие свойства, т. е. чем более резко возрастает затухание в полосе затухания.

Фильтрующие свойства четырехполюсников обусловлены возникновением в них резонансных режимов — резонансов токов или резонансов напряжений.

Широкий выбор фильтров для воды, казалось бы, приведет в замешательство любого. Как разобраться в этом изобилии приборов для очистки воды? В данной статье рассмотрим все основные виды фильтрующих элементов, бытовых и промышленных, по классификации и назначению, дадим советы по выбору и эксплуатации.

Сегодняшний рынок перенасыщен различными по мощности водяными фильтрами, которые не только способны очистить воду от всех примесей, но и смягчить её, насытить минеральными солями и т. д. Их условно можно разделить на две большие группы:

  1. Фильтры для предварительной подготовки воды.
  2. Фильтры для доочистки водопроводной питьевой воды.

Фильтры для предварительной подготовки воды

Такие фильтры используются для очистки самостоятельно добываемой воды, источником которой служат скважины и колодцы. Основными загрязнениями, несвойственными водопроводной воде, для данных источников является повышенное содержание сероводорода, железа, различных солей и большое количество взвеси.

Ярким примером таких фильтров являются установки по очистке воды от солей ECOSOFT FU 0835 Cab и сероводорода ECOSOFT FPС 1054 Centaur.

Тип загрязнения Тип фильтра Максимальное фильтруемое загрязнение Производительность Цена, руб.
Сероводород, железо ECOSOFT FPС 1054 Centaur Железо не более 3 мг/литр
Сероводород – 5 балл.
0,6 м /час, в течении 2-х лет 35000
Жёсткость ECOSOFT FU 0835 Cab соли калия, магния, марганца не более 15 мг/литр
железа – 0,3 мг/литр
1 м 3 /час, в течении 2-х лет 40000

Данные приборы способны к самостоятельной регенерации, в связи с чем при очистке 15–20 тысяч литров воды в сутки их ресурса хватит на два года работы. По истечении данного срока требуется выполнить замену гранул фильтрующего элемента.

В связи с высокой стоимостью и размерами, не смотря на большой ресурс и производительность, данные фильтры не используются в быту.

Фильтры для доочистки водопроводной питьевой воды

В зависимости от габаритов и производительности все рассмотренные далее фильтрующие элементы могут использоваться как в промышленных, так и бытовых целях. Данный тип фильтров используется для подготовки подаваемой по централизованным водоводам воды (условно питьевой) для использования. Большая их часть выпускается в форме сменного картриджа, позволяющего выполнить быструю замену отработавшего ресурс элемента.

Собранные на их базе фильтры можно использовать как для очистки всей подаваемой воды (магистральные фильтры), так и для получения питьевой воды из одного источника или крана. При этом используемые фильтрующие элементы отличаются только габаритами и формой.

Фильтры для доочистки питьевой воды можно разделить на несколько основных групп:

  1. Сетчатые фильтры для грубой механической очистки воды.
  2. Фильтры тонкой механической очистки.
  3. Фильтры с активированным углем.
  4. Многокомпонентные фильтрующие элементы.
  5. Мембраны обратного осмоса.
  6. Минерализаторы и активаторы.
  7. Электрические обеззараживающие фильтры.
  8. Фильтрующие элементы от накипи.

Сетчатые фильтры для грубой механической очистки воды

Для удаления крупных твёрдых включений из подаваемой водопроводной воды используются сетчатые фильтры различной конструкции и степени очистки. Сетку в этих фильтрах необходимо регулярно чистить, после чего фильтр может продолжать работать дальше.

Наиболее оптимальным решением для очистки воды от крупных включений является фильтр HONEYWELL FF06–1/2AA, способный с помощью установленного сетчатого фильтра задерживать взвеси размером до 100 мкм. Особенностью данного фильтра является встроенная система промывки, позволяющая удалить собранную на сетке взвесь без разборки фильтра.

Фильтры тонкой механической очистки

Данный тип фильтров предназначен для удаления подаваемых вместе с водой взвешенных твёрдых частиц, таких как песок, глина, ржавчина. В зависимости от использованного в нем материала (сверхтонкой полипропиленовой нити или волокон), данный фильтр может удалять подаваемые с водой твёрдые частицы размером 1, 5, 10, 15 или 50 микрон. Такая очистка позволяет улучшить цвет воды и предохранить дорогостоящую бытовую технику от повреждения.

Его ресурс зависит от количества загрязняющих веществ в воде, через каждые 5000 литров отфильтрованной воды или один раз в 3 месяца необходимо делать его замену.

К данному типу фильтров относится ФС-1 с заложенной функцией самоочистки.

Покрытие из активированного серебра создаёт дополнительный эффект обеззараживания питьевой воды. Ресурс эксплуатации данного фильтра при своевременной его очистке не ограничен. Поэтому, несмотря на высокую стоимость, около 10–12 тысяч рублей, он полностью окупает себя через несколько лет эксплуатации.

Фильтрующие элементы с активированным углем

Активированный уголь имеет прекрасные сорбирующие свойства, благодаря которым задерживается хлор и органические примеси, но при этом он плохо справляется с удалением из воды тяжёлых металлов и бактерий. Качество очистки в таком фильтре зависит от времени прохождения воды через фильтр: чем больше размер фильтра или меньше скорость движения воды, тем лучше качество фильтрации. Для очистки воды могут использоваться картриджи, заполненные гранулированным активированным углем. Такие фильтры имеют наибольшую площадь абсорбции, но плохо справляются с механической фильтрацией.

Картриджи из прессованного активированного угля немного хуже поглощают примеси из воды, но благодаря углеродным волокнам эффективно задерживают механические включения.

Угольные фильтры улучшают цвет воды и её вкусовые качества. Замена угольного фильтра должна производиться при ухудшении вкусовых качеств очищенной воды, но не реже чем указано в инструкции (обычно после фильтрации 4–5 тысяч литров воды).

Многокомпонентные фильтрующие элементы

Для повышения качества фильтрации в состав угольных фильтров вводятся различные добавки, с помощью которых картридж задерживает тяжёлые металлы и производит дезинфекцию воды.

Наполнитель в таких фильтрах может быть как гранулированный, так и прессованный. Для экономии места ряд картриджей данной группы выпускается в одном корпусе с фильтром механической очистки. Наиболее универсальным является фильтр, совмещающий в себе механическую очистку, активированный уголь и засыпку KDF (элементов, снижающих содержание железа и тяжёлых металлов, таких как ртуть, кадмий, свинец). KDF и аналогичные ему добавки могут удалять сероводород и пестициды, предотвращают развитие бактерий и вирусов в прошедшей обработку воде.

Фильтры данной категории эффективно справляются с очисткой воды от вредных примесей, удаляют плохой запах и улучшают вкус воды.

Мембраны обратного осмоса

Наивысшей степенью очистки питьевой воды обладают системы, построенные на базе мембран обратного осмоса. Их работа основана на способности стенки мембраны беспрепятственно пропускать молекулы воды, но при этом оставаться непроницаемой для более крупных молекул примесей. Этот эффект гарантирует идеальную чистоту воды на выходе.

Мембраны обратного осмоса имеют возможность регенерации (очистки от загрязнений), но их замена должна производиться не реже одного раза в два года, поскольку их свойства ухудшаются под воздействием содержащегося в воде активного хлора.

Минерализаторы и активаторы

Поскольку после очистки воды с помощью обратного осмоса из неё удаляются все соли и нарушается молекулярная структура, то перед её применением в пищу рекомендуется восстановить солевой баланс. Для этого используются специальные минерализирующие воду картриджи, а для улучшения усваивамости организмом прошедшей очистку воды проводится её активация.

Ресурс данных картриджей не превышает 2000 литров.

Электрические обеззараживающие элементы

Удаление патогенной флоры из подаваемой воды может производиться с помощью электрических озонирующих и излучающих ультрафиолет электрических блоков. В отличие от химических, данные блоки совершенно безвредны для человека, к тому же они очень экономичны и просты в обслуживании.

Ресурс работы данных фильтровальных элементов не ограничен, но возможно ухудшение качества обработки воды в связи с выпадением налёта на излучатель, поэтому их рекомендуют менять после отработки в течение 3–5 лет.

Тип картриджа для фильтра Производительность Ресурс Мех. очистка Хлор Органика Тяжёлые металлы Бактерии и вирусы Цена, руб.
Механической очистки 1,5–2,0 л/мин 4000–5000 литров + 50
Угольный, прессованный 1,5–2,0 л/мин 4000–5000 литров + + + 150
Угольный, гранулированный 1,5–2,0 л/мин 4000–5000 литров + + 150
Многокомпонент-ные 1,5–2,0 л/мин 4000–5000 литров + + + + 600
Мембраны 150–400 л/сутки 2–3 года работы + + + + + 1500
Минерализаторы 150–400 л/сутки 2000 литров 250
Бактерицидный, ультрафиолетовый 1500–3000 л/сутки 2–4 года работы + 1200

Фильтрующий элемент от накипи

Для подготовки водопроводной воды к использованию в бойлерах, стиральных и посудомоечных машинах применяются специальные «солевые» фильтры для смягчения жёсткости воды.

После засыпки в него гранул, за состояние электрических водонагревательных элементов можно не опасаться. После очистки более 30000 литров воды необходимо сделать досыпку гранул в очистительный прибор. Цена такого наполнителя составляет около 600 рублей за упаковку.

Приобретая фильтр для квартиры или офиса, достаточно знать «жесткость» воды (мягкая, жесткая, средней жесткости). Исходя из этого, подбирается требуемый многокомпонентный фильтрующий элемент и остальные составляющие системы водоочистки.

Оценить статью
Добавить комментарий