Напряжение прямой обратной и нулевой последовательности

Напряжение прямой обратной и нулевой последовательности

Строительство

В высоковольтных сетях из-за каких-либо повреждений может нарушаться нормальная работа электроустановок. Достаточно частое повреждение – замыкание на землю, при котором возникает угроза как человеческой жизни за счет растекания потенциала, так и оборудованию за счет нарушения симметрии в сети. Чтобы предотвратить возможные последствия от таких повреждений на подстанциях и в других устройствах применяют токовую защиту нулевой последовательности (ТЗНП).

Что такое нулевая последовательность?

Преимущественное большинство сетей получают питание по трехфазной системе. Которая характеризуется тем, что напряжение каждой фазы смещено на 120º.

Рис. 1. Форма напряжения в трехфазной сети

Как видите из рисунка 1 на диаграмме б) показана работа сбалансированной симметричной системы. При этом если выполнить геометрическое сложение представленных векторов, то в нулевой точке результат сложения будет равен нулю. Это означает, что в системах 110, 10 и 6 кВ, для которых характерно заземление нейтралей трансформаторов, при нормальных условиях работы, какой-либо ток в нейтрали будет отсутствовать. Также следует отметить, что геометрически смена фаз может подразделяется на такие виды:

  • прямой последовательности, при которой их чередование выглядит как A – B – C;
  • обратной последовательности, при которой чередование будет C – B – A;
  • и вариант нулевой последовательности, соответствующий отсутствию угла сдвига.

Для первых двух вариантов угол сдвига будет составлять 120º.

Рис. 2. Прямая, обратная и нулевая последовательность

Посмотрите на рисунок 2, здесь нулевая последовательность, в отличии от двух других, показывает, что векторы имеют одно и то же направление, но их смещение в пространстве между собой равно 0º. Подобная ситуация происходит при однофазном кз, при этом токи двух оставшихся фаз устремляются в нулевую точку. Также эту ситуацию можно наблюдать и при междуфазных кз, когда две из них, помимо нахлеста, попадают еще и на землю, а в нуле будет протекать ток лишь одной фазы.

При возникновении трехфазных кз в нейтрали обмоток ток не будет протекать, несмотря на аварию. Потому что токи и напряжения нулевой последовательности по-прежнему будут отсутствовать. Несмотря на то, что фазные напряжения и токи в этой ситуации могут в разы возрасти, в сравнении с номинальными.

Принцип работы ТЗНП

Практически все релейные защиты, действие которых отстраивается от появления токов нулевой последовательности, имеют схожий принцип. Рассмотрите вариант такой схемы, демонстрирующей действие защиты.

Принципиальная схема простейшей ТЗНП

Здесь представлен вариант включения реле тока Т, которое подключается ко вторичным обмоткам трансформаторов тока (ТТ), собранных в звезду. В данной ситуации нулевой провод от звезды обмоток трансформаторов отфильтровывает составляющие нулевой последовательности, в случае их возникновения. При условии, что система работает симметрично, обмотки реле Т будут обесточенными. А при условии, что в одной из фаз произойдет замыкание на землю, ТТ отреагирует на это, из-за чего по нулевому проводу потечет ток. Это и будет та самая составляющая нулевой последовательности, из-за которой произойдет возбуждение обмотки реле Т.

После чего происходит выдержка времени, определяемая параметрами реле В. При истечении установленного промежутка времени токовая защита посылает сигнал на соответствующую коммутационную установку У. Которая и производит отключение трехфазной сети. Более сложные варианты схемы могут включать и реле мощности, которое позволяет отлаживать работу защиты по направлению.

В случае междуфазных повреждений симметрия не нарушиться, а лишь измениться величина токов. А ТТ будут продолжать компенсировать токи, стекающиеся в нулевой провод. Преимущество такой схемы заключается в том, что при максимальных рабочих токах, все равно не будет срабатывать защита, поскольку будет сохраняться симметрия.

Но при существенном отличии в магнитных параметрах измерительных трансформаторов, произойдет дисбаланс в системе, и по нулевому проводнику будет протекать ток небаланса. Что может обуславливать ложные срабатывания токовой защиты даже в тех сетях, где соблюдается номинальный режим питания.

Читайте также:  Кровля для гаража своими руками

Правила подборки трансформаторов тока.

С целью снижения небаланса, влияющего на правильность срабатывания токовой защиты, подбирают такие ТТ, у которых вторичные токи не создадут перетоков. Для чего они должны соответствовать таким требованиям:

  • Обладать идентичными кривыми гистерезиса;
  • Одинаковая нагрузка вторичных цепей;
  • Погрешность на границе участков сети не должна превышать 10%.

К их вторичным цепям запрещено подключать еще какую-либо нагрузку, приводящую к искажению кривой намагничивания хотя бы в одном ТТ. Поэтому на практике при возникновении токов срабатывания от симметричной системы рекомендуют подвергать замене не один и не два, а все три трансформатора одновременно.

Область применения

Токовая защита, способная отреагировать на появление нулевой последовательности, нашла достаточно широкое применение в линиях с заземленной нейтралью. Так как в них токи коротких замыканий достигают наибольших величин. А вот при изолированной нейтрали ее установка нецелесообразна, поэтому ТЗНП в них не используют. Сегодня установки ТЗНП находят широкое применение:

  • на шинах районных подстанций для защиты силового оборудования;
  • в распределительных устройствах трансформаторных, переключающих и комплектных подстанций;
  • в токовых цепях крупных промышленных объектов с трехфазным силовым оборудованием.

Выбор уставок для ТЗНП

Для обеспечения ступенчатого принципа вывода линии, токовая защита, контролирующая появление нулевой последовательности в цепях, должна соответствовать селективности срабатывания. Здесь под селективностью понимается последовательное отключение определенных участков цепи, в зависимости от их значимости, с целью определения места повреждения или выделения поврежденного промежутка. Для этого выбираются соответствующие уставки срабатывания по времени для защиты. Рассмотрите пример выбора уставок на такой схеме.

Пример выбора уставок

Как видите, ТЗНП в данном случае отстраивается по тому же принципу, что и максимальная токовая защита, но с меньшей величиной выдержки времени. В этом примере каждая последующая ступень защиты выдерживает временную задержку на промежуток Δt больше, чем предыдущая. То есть время срабатывания первой токовой отсечки, в сравнении со второй будет рассчитываться по формуле: t1 = t2+ Δt. А время срабатывания второй по отношению к третей будет составлять t2 = t3+ Δt. Таким образом каждое последующее реле выполняет функцию резервной защиты.

Если обмотки преобразовательных устройств включаются по системе звезда – треугольник, а также звезда – звезда, ТЗНП первичных и вторичных цепей не совпадают. Из-за того, что замыкание в линиях высокого напряжения не обязательно вызовет появление составляющих нулевой последовательности в низких обмотках и питаемой ими цепи. Так как селективность ТЗНП для каждой из них должна выстраиваться независимо, на практике должна обеспечиваться их независимая работа.

Такая система ступенчатых защит позволяет минимизировать дальнейший переход повреждения на другие участки сети и силовое оборудование. А также помогает вывести из-под угрозы персонал, обслуживающий эти устройства. Главное требование к токовой защите – предотвращение ложных коммутаций по отношению к соответствующей зоне срабатывания.

Практическая реализация ТЗНП

Сегодня токовая защита, реагирующая на возникновение нулевой последовательности, может реализовываться микропроцессорными установками и посредством реле. В большинстве случаев устаревшие реле повсеместно заменяются на более новые версии токовой защиты. Но, помимо ТЗНП настраиваются в работу дистанционные, дифференциальные защиты и прочие устройства. Чья работа основывается как на симметричных составляющих, так и на других параметрах сети.

Помимо этого, в своем классическом исполнении ТЗНП не имеет возможности определять место повреждения. То есть для нее не имеет значение, в каком месте произошел обрыв. Поэтому для определения направления, в котором ток протекает по направлению к земле, применяют направленную защиту. Такая система отстраивается не только на токах, а и на напряжении, возникающем от нулевой последовательности. Данные величины подаются с трансформаторов напряжения, включенных по системе разомкнутого треугольника.

Схема работы направленной защиты

При замыкании в зоне резервирования токовой защиты к одной из обмоток реле мощности поступает напряжение, а на вторую обмотку поступает ток нулевой последовательности, используемый для токовой защиты. При условии, что вектор мощности направлен в линию, реле мощности разблокирует срабатывание токовой защиты. В противном случае, когда направление мощности указывает, что неисправность произошла на другом участке, реле мощности продолжит блокировать срабатывание токовой защиты.

Сегодня практическая реализация такой защиты выполняется посредством микропроцессорных блоков REL650 или на реле ЭПЗ-1636. Каждый, из которых уже включает в себя и токовую отсечку, и дистанционную защиту, и пусковое реле для возобновления питания.

Читайте также:  Не включается dvd проигрыватель

Ток нулевой последовательности это:

Сумма мгновенных значений токов трех фаз трехфазной системы Система нулевой последовательности существенно отличается от прямой иобратной тем, что отсутствует сдвиг фаз. Нулевая система токов по существу представляет три однофазныхтока, для которых три провода трехфазной цепи представляют прямой провод, а обратным проводом служитземля или четвертый (нулевой), по которому ток возвращается.

Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное илидвухфазноеКЗ).
Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Ток обратной последовательности, как известно из [22], появляется при любом несимметричном, а кратковременно и при трехфазном КЗ. Ток нулевой последовательности используется для повышения чувствительности пуска ВЧ-передатчика при КЗ на землю, а пусковое реле фазного тока КА – при симметричных КЗ

Практически ток нулевой последовательности получают соединением вторичных обмоток трансформаторов тока в фильтр токов нулевой последовательности (рис. 7.11). Из схемы видно, что ток в реле КА равен геометрической сумме токов трех фаз:

Ток в реле появляется только при однофазном или двухфазном КЗ на землю. Короткие замыкания между фазами являются симметричными системами, и соответственно этому ток в реле Iр=0 .

Зёх фазный ток – это когда фазы а,в,с отстоют друг от друга на 120градусов. Когда три фазы повёрнуты в 1 сторону – ток нулевой последовательности. Такое возникает при однофазных замыканиях на землю в сетях с заземлённой нейтралью. Поэтому применяются ТЗНП – токовые защиты нулевой последовательности для защиты от замыканий на землю – появился ток нулевой последовательности, значит есть замыкание на землю, защита срабатывает. . Токи обратной последовательности – это когда нарушен порядок чередования фаз. Возникают при межфазных замыканиях, для зашиты применяю ТЗОП – токовые защиты обратной последовательности. В двух словах так. Составляющие обратной последовательности (ток, напряжение) возникают при появлении в сети любой не симметрии (обрыв фазы, включение несимметричной нагрузки, однофазное или двухфазное КЗ).

Составляющие нулевой последовательности появляются при обрыве одной или двух фаз, однофазном или двухфазном КЗ на землю. ( при межфазных замыканиях без земли, составляющие равны нулю) Токи нулевой последовательности по существу являются однофазным током, разветвленным между тремя фазами и возвращающимся через землю и параллельные ей цепи. В силу этого, путь циркуляции токов нулевой последовательности резко отличен от пути, по которому проходят токи прямой или обратной последовательности Для практической реализации метода симметричных составляющих необходимо составлять три схемы замещения: прямой, обратной и нулевой последовательностей. Конфигурация этих схем и параметры их элементов в общем случае не одинаковы.

Схема прямой последовательности является той же, что и для расчета тока трехфазного замыкания. Из этой схемы находят результирующую ЭДС и результирующее сопротивление прямой последовательности: и . Началом этой схемы являются точки нулевого потенциала источников питания, концом – место короткого замыкания, к которой приложено напряжение прямой последовательности . Составляющие обратной последовательности возникают при появлении в сети любой несимметрии: однофазного или двухфазного короткого замыкания, обрыва фазы, несимметрии нагрузки.

Составляющие нулевой последовательности имеют место при замыканиях на землю (одно- и двухфазных) или при обрыве одной или двух фаз. В случае междуфазного замыкания составляющие нулевой последовательности(токи и напряжения) равны нулю.

Этот метод используют многие устройства РЗиА. В частности, принцип работы трансформатора тока нулевой последовательности основан на сложении значений тока во всех трех фазах защищаемого участка. В нормальном(симметричном) режиме сумма значений фазных токов равна нулю. В случае возникновения однофазного замыкания, в сети появятся токи нулевой последовательности и сумма значений токов в трех фазах будет отлична от нуля, что зафиксирует измерительный прибор (например, амперметр), подключенный ко вторичной обмотке трансформатора тока нулевой последовательности.

Для трехфазных транспозированых ЛЭП результат этого преобразования — точная матрица собственных векторов (матрица модального преобразования) [1] . Она одинакова как для тока, так и для напряжения.

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.
Читайте также:  Мерцание монитора ноутбука причины

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Оценить статью
Добавить комментарий
Adblock
detector