Напряжение это сила приложенная

Напряжение это сила приложенная

изучаем сопротивление материалов

Напряжения

, то есть, напряжение — это внутреннее усилие, приходящееся на единицу площади. По своей природе напряжение — это поверхностная нагрузка, возникающая на внутренних поверхностях соприкасания частей тела. Напряжение, так же как и интенсивность внешней поверхностной нагрузки, выражается в единицах силы, отнесенных к единице площади:Па=Н/м 2 (МПа = 10 6 Н/м 2 , кгс/см 2 =98 066 Па ≈ 10 5 Па, тс/м 2 и т. д.).

Рассечем тело произвольным сечением Выделим небольшую площадку ∆A. Внутреннее усилие, действующее на нее, обозначим [math]∆vec[/math]. Полное среднее напряжение на этой площадке [math]vec <р>= ∆vec/∆A [/math]. Найдем предел этого отношения при [math]∆A o 0[/math] . Это и будет полным напряжение на данной площадке (точке) тела.

Полное напряжение [math]vec p[/math], как и равнодействующая внутренних сил, приложенных на элементарной площадке, является векторной величиной и может быть разложено на две составляющие: перпендикулярное к рассматриваемой площадке – нормальное напряжение σn и касательное к площадке – касательное напряжение [math] au_n[/math]. Здесь n – нормаль к выделенной площадке 1 .

Касательное напряжение, в свою очередь, может быть разложено на две составляющие, параллельные координатным осям x, y, связанным с поперечным сечением – [math] au_, au_[/math]. В названии касательного напряжения первый индекс указывает нормаль к площадке,второй индекс — направление касательного напряжения.

Отметим, что в дальнейшем будем иметь дело главным образом не с полным напряжением [math]vec p [/math], а с его составляющими [math]σ_x, au _, au _ [/math] . В общем случае на площадке могут возникать два вида напряжений: нормальное σ и касательное τ.

Тензор напряжений

Компоненты напряжений по трем перпендикулярным граням элемента образуют систему напряжений, описываемую специальной матрицей – тензором напряжений

$$ T _sigma = left[matrix <
sigma _x & au _ & au _ \
au _ & sigma _y & au _ \ au _ & au _ & sigma _z
>
ight]$$

Здесь первый столбец представляет компоненты напряжений на площадках,
нормальных к оси x, второй и третий – к оси y и z соответственно.

При повороте осей координат, совпадающих с нормалями к граням выделенного
элемента, компоненты напряжений изменяются. Вращая выделенный элемент вокруг осей координат, можно найти такое положение элемента, при котором все касательные напряжения на гранях элемента равны нулю.

В каждой точке можно провести три взаимно-перпендикулярных главных площадки.

При повороте осей координат изменяются компоненты напряжений, но не меняется напряженно-деформированное состояние тела (НДС).

Связь внутренних усилий и напряжений

Внутренние усилия есть результат приведения к центру поперечного сечения внутренних сил, приложенных к элементарным площадкам. Напряжения – мера, характеризующая распределение внутренних сил по сечению.

Предположим, что нам известно напряжение в каждой элементарной площадке. Тогда можно записать:

Продольное усилие на площадке dA: dN = σzdA
Поперечная сила вдоль оси х: dQ x = [math] au [/math] dA
Поперечная сила вдоль оси y: dQ y = [math] au [/math] dA
Элементарные моменты вокруг осей x,y,z: $$egin dM _x = σ _z dA cdot y \ dM _y = σ _z dA cdot x \ dM _z = dM _k = au _ dA cdot x – au _ dA cdot y end$$

Читайте также:  Кофе молотый чалды что это

Выполнив интегрирование по площади поперечного сечения получим:

То есть, каждое внутренне усилие есть суммарный результат действия напряжений по всему поперечному сечению тела.

1 Проекция вектора полного напряжения на нормаль к данной площадке называется нормальным напряжением и обознача­ется через σn.

Напряжение – мера распределения внутренних сил по сечению.

, где– внутренняя сила, выявленная на площадке.

Полное напряжение .

Нормальное напряжение – проекция вектора полного напряжения на нормаль обозначается через σ. , где Е – модуль упругости I рода, ε – линейная деформация. Нормальное напряжения вызывается только изменением длин волокон, направлением их действий, а угол поперечных и продольных волокон не искажается.

Касательное напряжение – составляющие напряжения в плоскости сечения. , где(для изотропного материала) – модуль сдвига (модуль упругости II рода), μ – коэффициент Пуассона (=0,3), γ – угол сдвига.

7. Закон Гука для одноосного напряжённого состояния в точке и закон Гука для чистого сдвига. Модули упругости первого и второго рода, их физический смысл, математический смысл и графическая интерпретация. Коэффициент Пуассона.

– закон Гука для одноосного напряжённого состояния в точке.

Е – коэффициент пропорциональности (модуль упругости I рода). Модуль упругости является физической константой материала и определяется экспериментально. Величина Е измеряется в тех же единицах, что и σ, т.е. в кГ/см 2 .

– закон Гука для сдвига.

G– модуль сдвига (модуль упругости II рода). Размерность модуляGтакая же, как и у модуля Е, т.е. кГ/см 2 ..

μ – коэффициент Пуассона (коэффициент пропорциональности). . Безразмерная величина, характеризующая свойства материала и определяющаяся экспериментально и лежит в интервале от 0,25 до 0,35 и не могут превышают 0,5 (для изотропного материала).

8. Центральное растяжение (сжатие) прямого бруса. Определение внутренних продольных сил методом сечений. Правило знаков для внутренних продольных сил. Привести примеры расчёта внутренних продольных сил.

Брус испытывает состояние центрального растяжения (сжатия) в том случае, если в его поперечных сечениях возникают центральные продольные силы Nz(т.е. внутренняя сила, линия действия которой направлена по осиz), а остальные 5 силовых факторов равны нулю (Qx=Qy=Mx=My=Mz=0).

Правило знаков для Nz: истинная растягивающая сила – «+», истинная сжимающая сила – «-».

9. Центральное растяжение (сжатие) прямого бруса. Постановка и решение задачи об определении напряжений в поперечных сечениях бруса. Три стороны задачи.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Постановка: Прямой брус из однородного материала, растянутый (сжатый) центральными продольными силами N. Определить напряжение, возникающее в поперечных сечениях бруса, деформации и перемещения поперечных сечений бруса в зависимости от координатzэтих сечений.

10. Центральное растяжение (сжатие) прямого бруса. Определение деформаций и перемещений. Жёсткость бруса при растяжении (сжатии). Привести примеры соответствующих расчётов.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

.

При центральном растяжении (сж.) бруса в поперечном направлении в сечении возникает только нормальное напряжение σz, постоянное во всех точках поперечного сечения и равноеNz/F., гдеEF– жёсткость бруса при растяжении (сжатии). Чем больше жёсткость бруса, тем меньше деформируется бус при одной и той же силе. 1/(EF) – податливость бруса при растяжении (сжатии).

Читайте также:  Крепление канализации в подвале

11. Центральное растяжение (сжатие) прямого бруса. Статически неопределимые системы. Раскрытие статической неопределимости. Влияние температурного и монтажного факторов. Привести примеры соответствующих расчётов.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

Если число линейно-независимых уравнений статики меньше числа неизвестных, входящих в систему этих уравнений, то задача по определению этих неизвестных становится статически неопределимой. (На сколько удлинится одна часть, на столько сожмётся вторая).

Нормальные условия – 20º С. .f(σ,ε,tº,t)=0 – функциональная зависимость между 4 параметрами.

12. Опытное изучение механических свойств материалов при растяжении (сжатии). Принцип Сен-Венана. Диаграмма растяжения образца. Разгрузка и повторное нагружение. Наклёп. Основные механические, прочностные и деформационные характеристики материала.

Механические свойства материалов вычисляют с помощью испытательных машин, которые бывают рычажными и гидравлическими. В рычажной машине усилие создаётся при помощи груза, действующего на образец через систему рычагов, а в гидравлической – с помощью гидравлического давления.

Принцип Сен-Венана: Характер распределения напряжения в поперечных сечениях достаточно удалённых (практически на расстояния, равные характерному поперечному размеру стержня) от места приложения нагрузок, продольных сил не зависит от способа приложения этих сил, если они имеют один и тот же статический эквивалент. Однако в зоне приложения нагрузок закон распределения напряжения может заметно отличаться от закона распределения в достаточно удалённых сечениях.

Если испытуемый образец, не доводя до разрушения, разгрузить, то в процессе разгрузки зависимость между силой Р и удлинением Δlобразец получит остаточное удлинение.

Если образец был нагружен на участке, на котором соблюдается закон Гука, а затем разгружен, то удлинение будет чисто упругим. При повторном нагружении пропадёт промежуточная разгрузка.

Наклёп (нагартовка) – явление повышения упругих свойств материала в результате предварительного пластического деформирования.

Предел пропорциональности – наибольшее напряжение, до которого материал следует закону Гука.

Предел упругости – наибольшее напряжение, до которого материал не получает остаточных деформаций.

Предел текучести – напряжение, при котором происходит рост деформации без заметного увеличения нагрузки.

Предел прочности – максимальное напряжение, которое может выдержать образец, не разрушаясь.

13. Физический и условный пределы текучести материалов при испытании образцов на растяжение, предел прочности. Допускаемые напряжения при расчёте на прочность центрально растянутого (сжатого) бруса. Нормативный и фактический коэффициенты запаса прочности. Привести числовые примеры.

В тех случаях, когда на диаграмме отсутствует явно выраженная площадка текучести, за предел текучести принимается условно величина напряжения, при котором остаточная деформация εост=0,002 или 0,2%. В некоторых случаях устанавливается предел εост=0,5%.

max|σz|=[σ].,n>1(!) – нормативный коэффициент запаса прочности.

– фактический коэффициент запаса прочности.n>1(!).

14. Центральное растяжение (сжатие) прямого бруса. Расчёты на прочность и жёсткость. Условие прочности. Условие жёсткости. Три типа задач при расчёте на прочность.

Центральное напряжение (сж.) прямого бруса см. в вопросе 8.

15.Обобщённый закон Гука для трёхосного напряжённого состояния в точке. Относительная объёмная деформация. Коэффициент Пуассона и его предельные значения для однородного изотропного материала.

Читайте также:  Линия по производству эковаты

,,. Сложив эти уравнения, получим выражение объёмной деформации:. Это выражение позволяет определить предельное значение коэффициента Пуассона для любого изотропного материала. Рассмотрим случай, когда σxyz=р. В этом случае:. При положительном р величина θ должна быть также положительной, при отрицательном р изменение объёма будет отрицательным. Это возможно только в том случае, когда μ≤1/2. Следовательно, значение коэффициента Пуассона для изотропного материала не может превышать 0,5.

16. Соотношение между тремя упругими постоянными для изотропного материала (без вывода формулы).

,,.

17. Исследование напряжённо-деформированного состояния в точках центрально-растянутого (сжатого) прямого бруса. Закон парности касательных напряжений.

,.

– закон парности касательных напряжений.

18. Центральное растяжение (сжатие) бруса из линейно-упругого материала. Потенциальная энергия упругой деформации бруса и её связь с работой внешних продольных сил, приложенных к брусу.

А=U+K. (В результате работы накапливается потенциальная энергия деформированного телаU, кроме того, работа идёт на совершение скорости массе тела, т.е. преобразуется в кинетическую энергию).

Если центральное растяжение (сжатие) бруса из линейно-упругого материала производится очень медленно, то скорость перемещения центра масс тела будет весьма малой. Такой процесс нагружения называется статическим. Тело в любой момент находится в состоянии равновесия. В этом случае А=U, и работа внешних сил целиком преобразуется в потенциальную энергию деформации.,,.

Для улучшения этой статьи желательно ? :
  • Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное.

Wikimedia Foundation . 2010 .

Смотреть что такое "Механическое напряжение" в других словарях:

механическое напряжение — деформация напряженное состояние воздействие — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы деформациянапряженное состояниевоздействие EN… … Справочник технического переводчика

механическое напряжение — Stress (Mechanical) Механическое напряжение Мера внутренних сил, возникающих в деформируемом теле под влиянием внешних воздействий. Механическое напряжение в точке тела измеряется отношением упругой силы, возникающей в теле при деформации, к … Толковый англо-русский словарь по нанотехнологии. – М.

механическое напряжение — įtempis statusas T sritis Standartizacija ir metrologija apibrėžtis Dydis, susijęs su v >Penkiakalbis aiškinamasis metrologijos terminų žodynas

механическое напряжение — įtempis statusas T sritis fizika atitikmenys: angl. stress vok. Beanspruchung, f; Spannung, f rus. механическое напряжение, n; напряжение, n pranc. contrainte, f; contrainte mécanique, f … Fizikos terminų žodynas

механическое напряжение — įtempis statusas T sritis Energetika apibrėžtis V >Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

механическое напряжение — mechaninis įtempis statusas T sritis chemija apibrėžtis V >Chemijos terminų aiškinamasis žodynas

механическое напряжение — mechaninis įtempis statusas T sritis fizika atitikmenys: angl. mechanical stress vok. mechanische Biegespannung, f rus. механическое напряжение, n pranc. contrainte mécanique, f … Fizikos terminų žodynas

механическое напряжение, приводящее к отказу (оборудования) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN stress to failureSTOF … Справочник технического переводчика

Касательное механическое напряжение — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Нормальное механическое напряжение — Механика сплошных сред Сплошная среда Классическая механика Закон сохранения массы · Закон сохранения импульса … Википедия

Оценить статью
Добавить комментарий
Adblock
detector