Нагрузка на скатную кровлю

Нагрузка на скатную кровлю

Содержание

Стропильная нога (стропила) – основной элемент стропильной системы. Изготавливают чаще всего из бруса шириной 50-100 мм, высотой 100-200 мм.
Мауэрлат – элемент стропильной системы, который укладывается на несущие стены и равномерно передает нагрузку от стропильных ног на стены. Сечение мауэрлата чаще всего 100х100, 100х150 либо 150х150 мм.
Прогон – элемент стропильной системы. Передает нагрузку стропильных ног на стойки, а также обеспечивает дополнительную жесткость стропильной системы. Сечение 100х100, 100х150 либо 100х200 мм.
Лежень – элемент стропильной системы. Функции лежня схожи с мауэрлатом (это перераспределение точечной нагрузки от стоек/стропильных ног в распределенную нагрузку на несущие стены). Разница в том, что на мауэрлат опираются стропильные ноги, а на лежень – стойки. Сечение 100х100, 100х150 либо 150х150 мм.
Стойка – вертикальный элемент стропильной системы, служащий для передачи нагрузки от стропильной ноги на лежень. Сечение 100х100, 100х150 мм.
Подкос – элемент стропильной системы, который служит для подпорки стропильной ноги и снятия с нее части нагрузки. Сечение 100х100, 100х150 мм.
Затяжка – горизонтальный элемент стропильной системы, служащий для восприятия распорной нагрузки от стропильных ног на несущие стены. Сечение 50х150 мм.
Обрешетка – элемент стропильной системы, предназначенный для передачи нагрузки кровли на стропильные ноги.
Кобылка – элемент стропильной системы, который используется как продолжение стропильной ноги и служит главным образом для экономии материала, либо просто при недостаточной длине стропильной ноги. Сечение 50х150 мм.

Расчет размеров, определение угла наклона

1. Когда у Вас есть пролет и угол наклона
2. Когда у Вас есть пролет и высота конька

Читайте также:  Компьютер не видит кабель принтера

Расчет по пролету и углу наклона:

Длина стропильной ноги будет состоять из суммы двух длин:

где L1 = C / cos a
L2 = B / cos a
C – выступ стропильной ноги (см. рисунок)
B – ширина пролета (см. рисунок)
а – угол наклона в градусах (если у вас угол дан в промилях или процентах – можете перевести у нас на калькуляторе)

Расчет по пролету и высоте конька:

Длина стропильной ноги L в обоих случаях будет максимально приближена в реальному размеру.

Сбор нагрузок на стропильную систему

1. Снеговая нагрузка
2. Ветровая нагрузка
3. Постоянная нагрузка от:
— Вес кровельного материала
— Вес обрешетки
— Вес утеплителя
— Собственный вес стропильной системы

Для начала давайте узнаем грузовую площадь на стропильную ногу. Грузовая площадь – это площадь, с которой нагрузка действует на расчетную конструкцию (стропильную ногу).

На рисунке показаны две грузовые площади (заштрихованы): на стропильную ногу №1 (F=L·D) и на стропильную ногу №2 (F=0,5·D·L). Логично, что площадь №2 в два раза меньше, чем площадь №1, а следовательно и стропильная нога №2 несет нагрузку в 2 раза меньше и сечение ее должно быть меньше, но с целью унифицирования конструкций стропильных ног, мы будем рассчитывать наиболее нагруженную и полученное сечение принимать для всех.

Например: длина стропильной ноги (возьмем с предыдущего примера) L=6410 мм, а расстояние между ними 900 мм. Следовательно, грузовая площадь на наиболее нагруженную стропильную ногу будет равна:

Перевести мм2 в м2 можно здесь.

Снеговая нагрузка – это основная нагрузка, которая действует на стропильную систему.

Искомая величина снеговой нагрузки равна

— если угол а ≤ 30 градусов, то μ=1
— если угол 30 Расчет стропильной системы

Расчет на прочность стропильной ноги будет основываться на следующей формуле:

Где M – максимальный изгибающий момент
W – момент сопротивления поперечного сечения изгибу
Rизг – расчетное сопротивление изгибу (1-ый сорт древесины – 14 Мпа, 2-ой сорт– 13Мпа, 3-ий сорт – 8,5Мпа)

Момент сопротивления прямоугольного сечения:

Где b – ширина сечения стропильной ноги
h – высота сечения стропильной ноги

Если задаться, что высота h в 1,5 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

Если задаться, что высота h в 2 раза больше чем ширина b, то в итоге мы будем иметь следующую формулу.

Исходные данные – сосна 1 сорт, а геометрия и нагрузки такие же как в примерах выше.

Максимальный изгибающий момент рассчитаем у нас на калькуляторе путем ввода значений, посчитанных выше либо по формуле M=q·L1·L1/8 (менее точная):

L1 = 5189 мм – основной пролет
L2 = 1221 мм – правая консоль
q = 335,88 кг/м – нагрузка q

Результатом будем иметь максимальный изгибающий момент M=1008,7 кг·м

Переведем наш момент из кг*м в Н*мм.

Зададимся отношением h/b=1,5, следовательно, формула прочности будет иметь следующий вид:

Принимаем b = 125 мм, а высота h тогда будет 1,5·125=187,5 мм. Принимаем h =200 мм.

Полученное сечение стропильной ноги – 125х200 мм

Если задались бы отношением h/b=2, то получили бы следующее:

Принимаем b = 125 мм, а высота h тогда будет 2·125=250 мм. Принимаем h =250 мм.

Полученное сечение стропильной ноги – 125х250 мм

Итак, в г. Томск для крыши под углом 35 градусов с шагом стропил 900 мм из сосны I сорта, высотой до конька 7м с профнастилом в качестве кровельного материала подойдут стропила сечением 125х200 мм.

Подводя итог, можно сказать, что рассчитать стропила отнюдь не сложно, главное – внимательно собрать и рассчитать все данные.

Вы сами собираетесь проектировать и строить дом? Тогда Вам без процедуры сбора нагрузок на кровлю (или другими словами, на несущие конструкции крыши) не обойтись. Ведь только зная нагрузки, которые будут действовать на кровлю, можно определить минимальную толщину железобетонной плиты покрытия, рассчитать шаг и сечение деревянных или металлических стропил, а также обрешетки.

Данное мероприятие регламентируется СНиПом 2.01.07-85* (СП 20.13330.2011) "Актуализированная редакция" [1].

Сбор нагрузок на кровлю производится в следующем порядке:

1. Определение собственного веса конструкций крыши.

Сюда, например, для деревянной крыши входят вес покрытия (металлочерепица, профнастил, ондулин и т.д.), вес обрешетки и стропил, а также масса теплоизоляционного материала, если предусматривается теплый чердак или мансарда.

Для того, чтобы определить вес материалов нужно знать их плотность, которую можно найти здесь.

2. Определение снеговой (временной) нагрузки.

Россия находится в таких широтах, где зимой неизбежно выпадает снег. И этот снег необходимо учитывать при конструировании крыши, если, конечно, Вы не хотите лепить снеговиков у себя в гостиной и спать на свежем воздухе.

Нормативное значение снеговой нагрузки можно определить по формуле 10.1 [1]:

где: св — понижающий коэффициент, который учитывает снос снега с крыши под действием ветра или других факторов; принимается он в соответствии с пунктами 10.5-10.9. В частном строительстве он обычно равен 1, так как уклон крыши дома там чаще всего составляет более 20%. (Например, если проекция крыши составляет 5м, а ее высота — 3м, уклон будет равен 3/5*100=60%. В том случае, если у вас, например, над гаражом или крыльцом предусматривается односкатная крыша с уклоном от 12 до 20%, то св=0,85.

сt — термический коэффициент, учитывающий возможность таяния снега от избыточного тепла, которое выделяется через не утепленную кровлю. Принимается он в соответствии с пунктом 10.10 [1]. В частном строительстве он равен 1, так как практически не найдется человека, который на не утепленном чердаке поставит батареи.

μ — коэффициент, принимаемый в соответствии с пунктом 10.4 и приложением Г [1] в зависимости от вида и угла наклона кровли. Он позволяет перейти от веса снегового покрова земли к снеговой нагрузке на покрытие. Например, для следующих углов наклона односкатной и двускатной кровли коэффициент μ имеет значения:

Остальные значения определяются по методу интерполяции.

Примечание: коэффициент μ может иметь значение меньше 1 только в том случае, если на крыше нет конструкций, задерживающих снег.

Sg — вес снега на 1 м2 горизонтальной поверхности; принимается в зависимости от снегового района РФ (приложение Ж и данным таблицы 10.1 [1]). Например, город Нижний Новгород находится в IV снеговом районе, а, следовательно, Sg = 240 кг/м2.

3. Определение ветровой нагрузки.

Расчет нормативного значения ветровой нагрузки производится в соответствии с разделом 11.1 [1]. Теорию здесь расписывать не буду, так как весь процесс описан в СНиПе.

Примечание: Ниже Вы найдете 2 примера, где подробно расписана данная процедура.

4. Определение эксплуатационной (временной) нагрузки.

В том случае, если Вы захотите использовать крышу как место для отдыха, то Вам необходимо будет учесть нагрузку равную 150 кг/м2 (в соответствии с таблицей 8.3 и строкой 9 [1]).

Данная нагрузка учитывается без снеговой, т.е. в расчете считается либо та, либо другая. Поэтому с точки зрения экономии времени в расчете целесообразно использовать большую (чаще всего это снеговая).

5. Переход от нормативной к расчетной нагрузке.

Этот переход осуществляется с помощь коэффициентов надежности. Для снеговой и ветровой нагрузок он равен 1,4. Поэтому для того, чтобы перейти, например, от нормативной снеговой нагрузки к расчетной необходимо S0 умножить на 1,4.

Что касается нагрузок от собственного веса конструкций крыши и ее покрытия, то здесь коэффициент надежности принимается по таблице 7.1 и пункту 8.2.2 [1].

Так, в соответствии с данным пунктом коэффициент надежности для временно распределенных нагрузок принимается:

1,3 — при нормативной нагрузке менее 200 кг/м2;

1,2 — при нормативной нагрузке 200 кг/м2 и более.

6. Суммирование.

Последним этапом производится складывание всех нормативных и расчетных значений по всем нагрузкам с целью получения общих, которые будут использоваться в расчетах.

Примечание: если Вы предполагаете, что по заснеженной кровле будет кто-то лазить, то к перечисленным нагрузкам для надежности Вы можете добавить временную нагрузку от человека. Например, она может равняться 70 кг/м2.

Для того, чтобы узнать нагрузку на стропила или необходимо преобразовать кг/м2 в кг/м. Это производится путем умножения расчетного значения нормативной или расчетной нагрузки на полупролет с каждой стороны. Аналогично собирается нагрузка на доски обрешетки.

Например, стропила лежат с шагом 500 мм, а обрешетины — с шагом 300 мм. Общая расчетная нагрузка на кровлю составляет 200 кг/м2. Тогда нагрузка на стропила будет равна 200*(0,25+0,25) = 100 кг/м, а на доски обрешетки — 200*(0,15+0,15) = 60 кг/м (см. рисунок).

Теперь для наглядности рассмотрим два примера сбора нагрузок на кровлю.

Пример 1. Сбор нагрузок на односкатную монолитную железобетонную кровлю.

Исходные данные.

Район строительства — г. Нижний Новгород.

Конструкция крыши — односкатная.

Угол наклона кровли — 3,43° или 6% (0,3 м — высота крыши; 5 м — длина ската).

Размеры дома — 10х9 м.

Высота дома — 8 м.

Тип местности — коттеджный поселок.

Конструкций, задерживающих снег на крыше, не предусмотрено.

1. Монолитная железобетонная плита — 100 мм.

2. Цементно-песчаная стяжка — 30 мм.

4. Утеплитель — 100 мм.

5. Нижний слой гидроизоляционного ковра.

6. Верхний слой наплавляемого гидроизоляционного ковра.

Сбор нагрузок.

Определим нагрузки, действующие на 1 м2 грузовой площади (кг/м2) кровли.

Вид нагрузки Норм.
Коэф. Расч.

— монолитная ж/б плита (ρ=2500 кг/м3) толщиной 100 мм

— цементно-песчаная стяжка (ρ=1800 кг/м3) толщиной 30 мм

— пенополистирол (ρ=35 кг/м3) толщиной 100 мм

Примечание: вес паро- и гидроизоляции не учитывается в связи с их малым весом.

От собственного веса несущих конструкций крыши.

На начальном этапе сбора нагрузок определяется ориентировочно: вес деревянной обрешётки 10–12 кг/м²; наслонных деревянных стропил и деревянных прогонов 5–10 кг/м²; висячих деревянных стропил, несущих только холодную кровлю 10–15 кг/м².

Совокупность нагрузок.

Зимой на стропильную систему крыши могут действовать одновременно все нагрузки: от веса снега, собственного веса стропильной системы, кровли, утеплителя и давления ветра. В другое время часть этих нагрузок исчезает, например, давление от веса снега, тем не менее, стропила рассчитывают на полную совокупность нагрузок. И после их арифметического сложения умножают на коэффициент надежности 1,1. Другими словами, крыша рассчитывается на самые неблагоприятные условия работы и при этом закладывается дополнительная десятипроцентная прочность (коэффициент 1,1). В старых нормах коэффициент надежности для снеговых нагрузок составлял 1,4. В связи со значительным изменением (увеличением) нормативных значений давлений от веса снега, этот коэффициент в новом СНиПе не указывается его уже учли в нормативах по весу снега и даже с большим значением. Включать его в расчет не нужно.

Как уже говорилось, расчет несущей конструкции крыши (стропил, прогонов и обрешетки) ведется по двум предельным состояниям: на разрушение и прогиб.

  • Расчет на разрушение производится на полную нагрузку, действующую на крышу. Она называется расчетной нагрузкой и включает в себя полный вес снега принятый по таблице 1 с учетом наклона скатов, ветровую нагрузку, зависящую от высоты здания и угла наклона скатов, собственный вес крыши (стропил, прогонов, обрешетки, утепления и подшивки).
  • Расчет на прогиб ведется для той же суммы нагрузок, но вес снега принимается с понижающим коэффициентом 0,7. Эта нагрузка называется расчетной нормативной нагрузкой или просто нормативной нагрузкой.

Для правильного расчета стропильной системы должны быть собраны два варианта нагрузок действующих по площади (расчетная и нормативная) и переведены в линейные нагрузки.

Приведение нагрузок действующих по площади к нагрузкам действующим на метр длины конструкций крыши.

Все вышеприведенные нагрузки определяются по СНиПам и техническим характеристикам применяемых материалов. Эти нагрузки показывают общее давление от веса снега, слоев кровли и давления ветра и измеряются в килограммах на квадратный метр (кг/м²). Однако в конструкции крыши имеются несколько несущих конструкций: решетины, стропила, прогоны. Каждая из них работает только на ту нагрузку, которая давит непосредственно на нее, а не на крышу в целом. Все перечисленные несущие элементы крыши — это линейные конструкции и должны рассчитываться на давление, действующее на каждый метр длины этого элемента, то есть единица измерения кг/м² должна быть переведена в единицу измерения кг/м.

На каждую отдельно взятую стропилину давит только та нагрузка, которая расположена над ней. Значит, совокупную равномерно распределенную нагрузку нужно умножить на шаг установки стропил (рис. 1). Изменением ширины шага установки стропил, а следовательно, изменением площади сбора нагрузки над стропилом можно увеличивать или уменьшать нагрузку.

рис. 1. Приведение нагрузки действующей по площади к линейной нагрузке.

Обычно шаг установки стропил выбирают конструктивно в зависимости от размеров здания. Например, на стене длиной 6 м можно разместить стропила с шагом в 1 м, в этом случае потребуется 7 стропилин. Однако длина стены в 6 м также хорошо делится и на шаг 1,2 м, тогда получится 6 стропилин или на шаг 1,5 м — потребуется 5 стропилин. Для такой длины стен можно применить шаг установки и в 2, и в 3 м, но будет нужна усиленная обрешетка. Обычно шаг установки стропил не делают более 2 м, а для утепленных крыш его принимают равным размерам плит утеплителя 0,6, 0,8, 1,2 м. Другими словами, шаг установки стропил назначается в каждом конкретном случае свой, в зависимости от длины стен здания так, чтобы на ней разместилось целое число стропильных ног и расстояние между ними было одинаковым. Единственным критерием выбора шага стропил может быть только экономический. Нужно просчитать несколько вариантов установки стропил, найти их сечение и сравнить расход материалов. Наименьшая материалоемкость, при прочих равных, указывает на верность выбранного шага установки стропил.

С шагом установки решетин все обстоит несколько иначе, тут нельзя произвольно взять и изменить между ними расстояние. Чаще всего расстояние между решетинами зависит от применяемого кровельного материала, поэтому он задается строго определенных размеров, а сечение решетин подбирается расчетом. Нагрузка на каждый брусок или доску обрешетки определяется аналогично расчетной нагрузке на стропила, путем произведения нормативной нагрузки на шаг установки решетин.

Место установки прогонов назначается конструктивно и/или после расчета шага и сечения стропил. Они рассчитываются на сосредоточенные силы от давления стропил. Кроме обрешетки, стропил и прогонов, в конструкции крыш имеются и другие несущие элементы, такие как подкосы (подстропильные ноги) и стойки.

Пример сбора нагрузок.

Дано. Регион строительства Сергиево-Посадский р-н Московской обл. Высота строения — 10 м. Двухскатная мансардная крыша с уклоном скатов 30°. Кровля из металлочерепицы по сплошной обрешетке. Мансарда изнутри утеплена теплоизоляцией URSA М-20 толщиной 18 см и обшита одним слоем гипсокартона толщиной 12,5 мм.

По карте районирования снегового покрова (рис. 3) или карте СНиП 2.01.07-85 определяем, что давление от веса снега для расчета по первой группе предельных состояний составляет 180 кг/м², для расчета по второй группе предельных состояний — 126 кг/м².

По рисунку 5 видим, что крыша с наклоном скатов до 30° включительно, накапливает снеговые мешки на подветренном скате. Увеличение веса снега характеризуется коэффициентом µ=1,25. Следовательно, вес снегового покрова должен быть увеличен на эту величину. Тогда для расчета по первой группе предельных состояний вес снега составит 180×1,25=225 кг/м², а для расчета по второй группе предельных состояний — 126×1,25 = 157,5 кг/м².

По картам районирования средней скорости ветра и температуры января (рис. 6 и 7) видим, что снег с крыши ветром сдуваться не будет, тем более, что это не позволяет сделать и уклон крыши, превышающий 12°. Следовательно, коэффициент учитывающий сдувание снега будет равен с=1. Таким образом, получаем окончательные величины снеговых нагрузок по формулам:

Qр.сн=Q×µ×c=180×1,25×1=225 кг/м² — для первого предельного состояния (на прочность)
Qн.сн=0,7Q×µ×c=0,7×180×1,25×1=157,5 кг/м² — для второго предельного состояния (на прогиб)

По карте районирования ветрового давления (рис. 9) определяем, что давление ветра на крышу будет составлять Wо=32 кг/м², а коэффициент k(z)=0,65, для местности типа Б. Далее по рисунку 10 определяем, что на скаты крыши будет действовать подъемная сила уменьшающая давление ветра, эта величина характеризуется несколькими коэффициентами с. Однако мы эти понижающие коэффициенты использовать не будем, поскольку нам достоверно неизвестно какой из скатов будет с подветренной, а какой с наветренной стороны, поэтому примем с=1
Таким образом, получаем нагрузку от давления ветра равную:

W = Wо×k(z)×c=32×0,65×1=20,8 кг/м²

По техническим характеристикам и теплотехническому расчету рассчитываем вес строительных материалов используемых для строительства крыши:

металлочерепица — 5 кг/м²;
обрешетка — 12 кг/м²;
утеплитель — 4 кг/м²;
гипсокартон — 10,6 кг/м²

Собственный вес стропильной системы временно определяем равным 10 кг/м². В последующих расчетах, когда будет определено сечение конструктивных элементов (стропил) нагрузку нужно будет вновь пересчитать с учетом появившихся размеров стропил.

Теперь можно суммировать все нагрузки для расчета по двум предельным состояниям:

Qр=225+20,8+5+12+4+10,6+10=288 кг/м² — для расчета на прочность
Qн=157,5+20,8+5+12+4+10,6+10=220 кг/м² — для расчета на прогиб

Для получения окончательных данных по нагрузкам увеличим их на 10%, умножим на коэффициент надежности 1,1

Qр=288×1,1=317 кг/м² — для расчета на прочность
Qн=220×1,1=242 кг/м² — для расчета на прогиб

Вот эти цифры и будем использовать для дальнейших расчетов.

Пример приведения нагрузок действующих на 1 м² к нагрузкам действющим на 1 пм.

Дано: для двух типов предельных состояний имеем нагрузки Qр и Qн действующие на 1 м² крыши равными 317 и 242 кг/м². Шаг стропил b=1,2 м.
Решение.
Нагрузку нужно умножить на шаг установки конструктивного элемента ( в данном случае, шаг стропил).

qр=Qр×b=317 кг/м²×1,2 м=381 кг/м
qн=Qн×b=242 кг/м²×1,2 м=291 кг/м

Те же нагрузки, шаг стропил b=0.8 м

Решение.
qр=Qр×b=317 кг/м²×0,8 м=254 кг/м
qн=Qн×b=242 кг/м²×0,8 м=194 кг/м

Те же нагрузки, шаг стропил b=1 м

Решение.
qр=Qр×b=317 кг/м²×1 м=317 кг/м
qн=Qн×b=242 кг/м²×1м=242 кг/м
Аналогично определяются нагрузки и на другие конструктиыные элементы крыши, например, на прогоны, бруски или доски обрешетки.

Источник: «Конструкции крыш. Стропильные системы» Савельев А.А.

Оставляя комментарий Вы соглашаетесь с Политикой конфиденциальности

Оценить статью
Добавить комментарий