Линза для светодиода своими руками

Линза для светодиода своими руками

Содержание

Введение

Характеристики мощных светодиодов

Мощные светодиоды имеют большой угол обзора. Популярные светодиоды компании CREE не являются исключением. Вот, например, характеристики светодиода XP-E2 [5].

• Размер 3,45 х 3,45 x 2.08 мм
• Цвет Белый
• Максимальный ток 1 A
• Максимальная мощность 3 Вт
• Максимальный световой поток 283 лм
• Номинальное прямое напряжение 2.9 V Белый @ 350 мА
• Максимальное обратное напряжение 5 В
• Угол обзора 110°

Коллиматоры

Существует множество вариантов коллиматоров, собирающих расходящееся излучение в зоне наблюдения. Среди них можно выделить линзы (преломляющие свет), отражатели и составные коллиматоры, состоящие из линз, преломляющих поверхностей и отражателей (Рис. 1, Рис. 2).

Требуемое равномерное освещение объекта или другое распределение освещенности достигается применением специальных материалов, рассеивающих поверхностей и корректировкой форм элементов коллиматора и их расположения.


Рис. 1. Примеры структур коллиматоров светодиодов [1,2,3,4].


Рис. 2. Геометрия демонстрационных моделей среды проектирования оптических устройств LightTools.

Распределения лучей отражателя

Профиль отражателей вычисляется с учетом угла обзора и диаграммы направленности светодиода, размера объекта и расстояния до него, а также и требуемого распределения освещенности объекта.

Некоторые варианты распределения лучей светодиода на поверхности объекта показаны на Рис. 3.


Рис. 3. Варианты распределения лучей в зоне объекта. A — фокусировка в центральной точке; B, D — слабые лучи (см. диаграмму направленности) собираются на периферии зоны объекта, сильные — в центре (для усиления интенсивности центральной зоны); варианты С и E собирают слабые лучи в центе, а сильные — на периферии (для выравнивание интенсивности засветки).

Расчет профилей отражателя

Расчет профиля отражателя, фокусирующего лучи точечного источника (Рис. 3, вариант А), можно выполнить без использования специальных сред для разработки оптических систем.


Рис. 4. Распределение прямых и фокусируемых лучей (на этом рисунке слева, Рис. 3, вариант А) и диаграмма расчета профиля отражателя точечного источника (справа).

Далее, приведена программа расчета и построения профиля отражателя (Рис. 5) в среде МАТЛАБ с использованием построений Рис. 4.


Рис. 5. Профили отражателей излучения точечных источников с углом обзора 180, 120, 60 и 20 град для освещения 50 мм объекта, расположенного на расстоянии 300 мм от источника.

Диаграмма расчета профиля отражателя В (Рис. 3) показана на Рис. 6.


Рис. 6. Диаграмма расчета профиля отражателя лучей точечного источника: «Слабые» — периферийные лучи (диаграммы направленности светодиода) идут к границам объекта, «Сильные» центральные лучи собираются в центре объекта (Рис. 3, вариант В).


Рис. 7. Профили 6 мм отражателей (слева) и углы отражаемых лучей (справа). Здесь, углы рассчитаны относительно плоскости источника. Так, углу 30о соответствует угол обзора 120о = 2*(90о -30о). Соответственно, минимальный угол прямых лучей (не касающихся отражателя) равен 50о, как 2*(90о — 65о ).

Сравнительные профили отражателей вариантов A,B,C,D,E (Рис. 3) показаны на Рис. 7. Максимальный диаметр отражателей ограничен 6 мм.

Сравнение профилей (Рис. 7) и распределение лучей (Рис. 3) показывает, что длина коллиматоров и диапазон собираемых лучей максимальны для вариантов D и E. Коллиматор Е обеспечивает лучшую равномерность освещения объекта, чем коллиматор D. Коллиматор В имеет наибольшую зону для размещения линзы, которая соберёт лучи не коснувшиеся отражателя. Угол расхождения прямых лучей прошедших внутри отражателя В составляет 60 градусов (как 90-60*2).

Составной компактный коллиматор

Составной коллиматор включает отражатель, ограниченного размера, и линзу, которая фокусирует лучи не собранные отражателем. Пакеты программ LightTools или TracePro используются для расчета коллиматоров с отражателями и линзами. Расчет линзы может быть выполнен отдельно, например, в среде Zemax или Code V.


Рис. 8. Структуры компактного коллиматора из органического стекла ПММА (вверху) и коллиматора со вставной линзой из стекла BK7 (внизу) для освещения 50 мм объектов с расстояния 300 мм. Расчёт отражающей поверхности выполнен в МАТЛАБ, для расчёта линзы использовалась среда Zemax.


Рис. 9. Результаты расчета линзы коллиматора Рис. 8. в Zemax.

Построение отражателя в LightTools

Пакет программ LightTools позволяет выполнить расчет коллиматоров и оптимизировать их параметры в автоматическом режиме.

Результаты расчета в среде LightTools профиля оптимального отражателя без ограничения его размеров для освещения 50 мм объекта, удаленного от светодиода XP-E2 на 300 мм, показаны на Рис. 10. Профиль отражателя описан кривой Безье (Bezier) [6]. Модель светодиода XP-E2 взята из библиотеки LightTools. Оптимальные выходной диаметр и длина модели коллиматора составили 12.9 и 18.9 мм соответственно.


Рис. 10. Размеры и эффективность отражателя Ø12.9 x 18.9 мм. Эффективность 17.5% определяется отношением количества лучей достигших объекта к количеству лучей испускаемых источником.

Ограничение диаметра отражателя 6.2 мм привело к снижению его эффективности с 17.5% до 5,6% (Рис. 11). Это связано, в основном, с тем, что с уменьшением площади отражения возросло количество прямых лучей светодиода не попадающих в зону объекта.


Рис. 11. Характеристики освещенности и параметры оптимального отражателя, собирающего лучи светодиода XP-E2 в диапазоне 69… 103 град. Максимальный диаметр отражателя ограничен 6.2 мм. Эффективность коллиматора

Уточненная модель светодиода отличается от точечного источника тем, что излучение формируется множеством точечных источников, распределенных по всей поверхности диода, например, в зоне 1 х 1 мм для XP-E2. Углы обзора и диаграммами направленности всех источников равны.

Профиль отражателя излучения распределенного источника (Рис. 12) отличается от профиля отражателя для сосредоточенного источника (Рис. 11), однако их эффективности (


Рис. 12. Оптимальные параметры LightTools отражателя излучения распределенного источника XP-E2. Максимальный диаметр отражателя ограничен 6.2 мм. Эффективность коллиматора

Сравнение профилей отражателей, расcчитанных в МАТЛАБ и LightTools

Профили отражателей, показанные Рис. 13, рассчитаны в МАТЛАБ (профили: A,B,C,D,E) и LightTools (профили: LT point, LT dist, LT unlim). В МАТЛАБ выполнен ручной расчет для точечных источников. В LightTools оптимизация профилей выполнена в автоматическом режиме для точечного и распределенного источников с ограничением (6.2 мм) и без ограничения диаметра отражателя для равномерного освещения 50 мм объекта, удалённого от источника на 310 мм.


Рис. 13. Профили отражателей: A, B, C, D, E — ограниченного диаметра (6 мм), рассчитаны в МАТЛАБ для точечного источника; LT point — ограниченного диаметра (6.2 мм), рассчитан в LightTools для точечного источника; LT dist — ограниченного диаметра (6.2 мм), раcсчитан в LightTools для распределенного источника; LT unlim — свободного размера, расcчитан в LightTools для точечного источника.

Алгоритмы оптимизации параметров в LightTools скрыты от пользователя. Для понимания алгоритма оптимизации LightTools, который использовался при расчете профиля «LT dist» (Рис. 13) построено распределение лучей в МАТЛАБ (Рис. 14).


Рис. 14. Ход лучей распределенного источника отражаемых в зону 50 мм с расстояния 310 мм, общая диаграмма (слева), увеличенный фрагмент (справа). Рассматривается излучение от краёв (голубые и зеленые линии) и центра (красные линии) распределенного источника. Разделение краевых и центрального пучков 1х1 мм источника достигается смещениями отражателя на ±0.5 мм.

Распределение лучей (Рис. 14) показывает, что оптимизация LightTools нашла профиль отражателя для центрального точечного источника с освещением 1/3 зоны объекта и использовала этот профиль для освещения всей зоны объекта источниками излучения, распределенными на площади светодиода 1х1 мм.

Код МАТЛАБ для вычисления массива точек оптимального профиля отражателя — кривой Безье (‘Besier_profile_dist_source.mat’), заданной параметрами LightTools Bezier_WX Bezier_Relative_UX и Bezier_VX:

Ручной расчет коллиматора

Для выполнения ручных расчетов отражателя распределенного источника необходимо:

1. Найти координаты точки отражателя, ближайшей к источнику.
2. Рассчитать профиль отражателя (см. алгоритм раздела Расчет профилей отражателя) для уменьшенной зоны объекта, например, 1/3.

Через начальную точку отражателя, ближайшую к источнику, должны проходить лучи, испускаемые всеми точками плоскости светодиода. Прямые лучи, проходящие через начальную точку, должны освещать зону соразмерную с объектом, находящимся на требуемом расстоянии от источника.


Рис. 15. Построение лучей для поиска начальной точки отражателя. Зоны располагаются на окружности радиусом 310 мм (правый рисунок) равном расстоянию до объекта. На левом рисунке показано увеличенное изображение с поверхностью светодиода радиусом 1,5 мм.

Положению начальной точки отражателя соответствует точка 1 на поверхности светодиода радиусом 1.5 мм (Рис. 15) через которую проходят крайние (L и R) и центральный © лучи распределенного излучателя в зону

50 мм, отстоящую от источника на 310 мм.
Угол обзора рассчитанного коллиматора с отражателем можно уменьшить, включив в структуру коллиматора линзу, как показано на Рис. 8.

  • Цена: $ 2.42
  • Перейти в магазин

Приветствую муськовчан!
Заказал я не очень давно здесь неплохие светодиоды мощностью 10 Вт (не реклама, поскольку сам узрел их в обзоре у уважаемого dia)
Светодиоды мне понравились — за свою цену оказались действительно качественными, у всех экземпляров на малом токе свечение практически идеально равномерное. Но суть не в этом.
Прикрутил я их к радиатору, драйверу и запитал. Все понравилось, но захотелось немного большего. В плане мощности. Ну и световой поток хотелось немного так сказать обуздать))) Возникла идея взять светодиод помощнее и сделать из него что то типа прожектора для гаража. Начал я рыться на просторах Aliexpress и попались мне линзы для самодельного прожектора (ну или может еще чего) Решил заказать сразу два комплекта.

Вот характеристики со странички товара:

Specifications:
Beam Angle: 60-80 degree
Light transmittance: 98%
Material: lens for Glass
Optical glass lens parameters:
Outer diameter: 44mm
Height: 19mm
Bottom thickness: 3mm
Reflector cup parameters:
Diameter: 50mm
Height: 11mm
The lower caliber: 26* 26mm
Suitable for loading 44mm lens
Viewing angle: 60 degrees
Fixed bracket parameters:
Diameter:52mm
Height:7mm
Package Include:
1pc 44mm Glass Lens
1pc 50mm Reflector cup
1pc fixed bracket

Линзы пришли в желтом пупырчатом пакете:
Как вы могли заметить, белая коробочка, обмотанная пленкой сильно выпучена с одной стороны. Оказалось, что продавец положил целых три линзы вместо двух (думаю, что именно положил, а не ошибся, поскольку белая коробочка идеально подходит для двух, но третью туда нужно запихнуть, да не как зря). Наверное, подстраховка от Почты России)))
Каждая линза завернута в мягкую бумагу. Линзы действительно стеклянные, а вот рефлектор из пластика.
Верхнее прижимное кольцо из достаточно прочного металла, что приятно удивило.
Самих светодиодов пока нет, может кто подскажет качественные светодиоды 203050100 Вт соответствующего размера (26х26мм).
Буду рад, если кто поделится ссылкой на подобные линзы для 10Вт светодиоды.

Плюсы:
+ Линза из стекла
+ Качественное прижимное кольцо (не в пример тем, которые я встречал)
+ Лишняя линза в комплекте

Минусы:
— Пластиковый рефлектор (хз как себя проявит со временем)

Благодаря высоким показателям энергоэффективности сегодня все чаще и чаще в качестве светоисточников головной оптики для авто и других светильников применяются лед-элементы. Однако для проявления их 100% потенциала требуется специальная система фокусировки. Как правило, для этого применяют линзы для светодиодов. Рассмотрим, что они собой представляют, каково их назначение, какие основные виды их существуют, какой материал для их изготовления используется, а также как их сделать своими руками.

Принцип работы

Принцип работы линз для плоских и иных форм светильников со светодиодами основан на естественном законе природы о преломлении световых волн на границе двух различных сред. В данном случае дело касается материала оптики (стекла, пластика) и воздуха. Преломление светового потока существенно зависит от формы рубежа, через который он проходит.

Например, благодаря специальной линзе с выпуклыми сторонами светодиод ручного фонарика фокусирует узкий луч в пределах 12-15 градусов. Светотехнические характеристики изменяются также в зависимости от расстояния лед-кристалла до границы раздела сред, а также от препятствия, устанавливаемого между ними. В некоторых системах автомобильной оптики это применяется для переключения с ближнего света на дальний и наоборот.

Важно! Для эффективного освещения протяженных площадей, что, например, актуально при движении на авто в темноте, световому потоку необходимо задать овальную форму в горизонтальном направлении. Для этого линза должна иметь специальную сложную конструкцию. Поэтому многие производители машинных фар, уличных фонарей и прожекторов выпускают готовый оптический комплект со светодиодом.

Назначение

Если в обычных фонарях, где применяют люминесцентные светоисточники или лампы накаливания, в качестве фокусирующей системы берется отражатель (рефлектор), то для светодиодных элементов требуется иное устройство. Причина этого заключается прежде всего в структуре и принципе действия самого лед-источника и его светотехнических характеристиках. LED имеют отличную от штатных светильников диаграмму направленности потока освещения.

Связано это в первую очередь с незначительными размерами излучателя – полупроводникового кристалла, что придает им такие специфические технические характеристики, как:

  1. Точечные свойства даже на очень малом расстоянии.
  2. Малый угол рассеивания светопотока.

Поэтому чтобы получить требуемую кривую распределения света в пространстве (как у обычных лампочек), необходимо прибегать к разного рода технологическим ухищрениям. Одним из них и является применение линз для светодиодов. Прежде всего это автомобильные фары, прожектора, уличные фонари и прочие мощные светильники. В комнатных люстрах, напротив, используются рассеиватели – для создания комфортного однородного освещения.

Обратите внимание! Изначально светодиод создает штатный поток света с постепенным уменьшением его силы при удалении от центральной его оси. Для придания ему заданной формы и применяют специальные линзы. Они налагаются на лед-кристалл и относятся к категории вторичной оптики.

Виды линз

У современных производителей классификация линз для светодиодов происходит по двум основным признакам:

  1. Типу лед-элемента.
  2. Модели светораспределения.

Среди вторичных признаков оптики можно выделить количество светодиодов, симметричность их расположения, а также прозрачность или матовость материала. Наиболее популярным типом распределения светового потока является круглое симметричное. Это может быть каскад последовательно соединенных лед-кристаллов небольшим номиналом 1-3-5 W.

Световой угол у них может варьироваться в достаточно широких пределах – от нескольких до полутора сотен градусов. Некоторые характерные виды имеют свои названия. Например, линзы, которые фокусируют пучок освещения не более чем на 10 градусов, называют спотовыми («спот» — с англ. означает «пятно»).

Важно! Заводы по выпуску светодиодов взаимодействуют с производителями применяемых для них линз. Поэтому при поступлении в продажу одних, через определенное время можно найти и другие.

Светодиоды с линзами для авто

Широкое развитие светодиодной светотехники привело к тому, что уже многие автомобили с конвейера оснащаются лед-элементами и соответствующей им оптической системой. При этом в ходе разработки фар обязательно учитываются требования правил дорожного движения по характеристикам бортового освещения.

Со старыми автомобилями, имеющими в качестве источника света лампочки накала, галогенки или ксенон, дело обстоит сложнее. Хотя многие линейки и предлагают устанавливать в штатные фары светодиоды, полноценного эффекта от их использования это не дает. Нужна специальная система оптики – с линзами. Поэтому многие производители предлагают автопользователям тюнингованный вариант их монтажа. Уже готовые фары можно установить на радиаторную решетку или бампер.

Совет! Наиболее популярными из автомобильных фар со светодиодами на сегодня являются так называемые би-линзы. С ее помощью можно одновременно формировать и ближний, и дальний поток освещения. Принцип его действия и конструкция аналогичны биксенону и бигалогенкам. Управляемая соленоидом специальная шторка меняет распределение света внутри оптики, создавая заданные характеристики внешней подсветке.

Материалы для изготовления и способы крепления

В качестве материалов для линз под светильники со светодиодами применяют либо стекло с повышенным содержанием бора и кремния, либо монолитные светопропускающий поликарбонат. Стеклянная основа более предпочтительна, так как лучше выдерживает внешние факторы на образование сколов, трещин и потертостей.

Делаем линзу своими руками

Если нет возможности купить готовый оптический набор, то собрать его можно своими руками. Для этого потребуется:

  1. Светодиод.
  2. Увеличительное стекло подходящего диаметра (например, лупа).

Чтобы собрать фонарь, необходимо саму линзу закрепить на некотором расстоянии от лед-кристалла. Величину этого промежутка лучше определять опытным путем, предварительно включив светодиод и, расположив перед ним увеличительное стекло и направив на поверхность (стену), передвигать для выявления оптимальной фокусировки и яркости.

Закрепить линзу можно, либо приклеив ее к лед-элементу, либо зажав ее между корпусом и защитным стеклом фонаря, либо соорудив для нее специальный держатель, который монтируется на клей или болты к плате. Не последнее место в этом процессе занимает центровка увеличительного стекла относительно плоскости и центральной перпендикулярной оси кристалла. Устанавливать его нужно как можно точнее.

В ходе монтажа линза не должна загрязняться жировыми пятнами с пальцев. В противном случае качество освещения будет сильно понижено. При выборе увеличительного стекла для светильника со светодиодами нужно уделять внимание следующим параметрам:

  1. Углу формирования светопотока.
  2. Внешнему виду, размерам и форме.
  3. Степени сложности монтажа.
  4. Симметричности.
  5. Оптическим характеристикам.

Рекомендация! Выпускаемые специально для светодиодов линзы имеют специальные держатели, соответствующие их светотехническим характеристикам и существенно облегчающие монтаж.

Основные выводы

Линза для светодиода предназначена для фокусировки светового потока светильника. Это позволяет формировать направленное освещение с заданными характеристиками. Например, овально распределенным в горизонтальной плоскости, что необходимо для подсветки дороги для движущегося автомобиля или прожектора.

Светильники такого типа различаются по:

  1. Виду лед-кристалла.
  2. Их количеству.
  3. Симметричности их расположения.
  4. Типу распределения светового потока.

Современные фонари с линзой на светодиодах способны фокусировать освещение от нескольких до полутора сотен градусов. Для оснащения автомобилей чаще всего применяются би-линзы – способные формировать ближний и дальний свет. В качестве основного их материала применяют стекло или поликарбонат. Чтобы сделать подобную оптическую систему своими руками, необходимо приобрести специальное или универсальное увеличительное стекло и закрепить его, соблюдая требования соосности, над лед-элементом на определенном расстоянии в соответствии с заданными параметрами.

Читайте также:  На что живут пенсионеры в китае
Оценить статью
Добавить комментарий