Кривая представляющая собой зависимость магнитной индукции от

Кривая представляющая собой зависимость магнитной индукции от

Определение. Магнетики, магнитная проницаемость которых достигает больших значений и зависит от внешнего магнитного поля и предшествующей истории, называются ферромагнетиками.

К их числу, например, относятся железо, никель, кобальт, их сплавы и соединения в кристаллическом состоянии. Намагниченность ферромагнетиков до раз может превышать намагниченность пара- или диамагнетиков.

Кривая намагничивания и петлягистерезиса. Магнитная восприимчивость ферромагнетиков зависит от напряженности магнитного поля. График нелинейной зависимости намагниченности от напряженности поля показан на рис. 7.11, а.

При увеличении напряженности поля намагниченность испытывает насыщение: при .

График нелинейной зависимости индукции от напряженности магнитного поля называется кривой намагниченности (см. рис. 7.11, б).

то кривая намагниченности не выходит на насыщение.

Если производить перемагничивание образца в периодическом магнитном поле, то, по аналогии с сегнетоэлектриками, кривая зависимости имеет вид петли гистерезиса (см. рис. 7.12). Для наблюдения гистерезиса достаточно поместить ферромагнитный сердечник внутрь соленоида, по которому пропускать периодически изменяющийся электрический ток.

Кривая — кривая намагничивания из начального размагниченного состояния. Петля гистерезиса – замкнутая кривая . При уменьшении напряженности поля от максимального значения в положении до нуля изменение индукции магнитного поля запаздывает относительно кривой намагничивания . Это указывает на зависимость текущих значений индукции не только от значений напряженности поля в тот же момент, но и от значений напряженности в предшествующие моменты.

Вывод. Ферромагнетики обладают памятью.

При сохраняется остаточное намагничение. Индукция, соответствующая отрезку , называется остаточной. Ферромагнетик в этом состоянии становится постоянным магнитом, если разомкнуть цепь обмотки соленоида в момент, когда сила тока в обмотке, уменьшаясь, станет равной нулю. Для полного размагничивания ферромагнетика () надо приложить внешнее магнитное поле обратного направления с напряженностью, соответствующей отрезку . Эта напряженность называется коорцетивной силой ферромагнетика.

Форма петли гистерезиса, остаточная индукция и коорцетивная сила зависят от материала.

Классификация ферромагнитных материалов. Ферромагнитные материалы делят на две группы:

а) мягкие ферромагнетики с большой магнитной проницаемостью с малой коорцетивной силой, то есть легко намагничивающиеся и размагничивающиеся;

б) жесткие ферромагнетики с относительно низкой магнитной проницаемостью, но большой коорцетивной силой, то есть трудно намагничивающиеся и размагничивающиеся.

Материалы первой группы используют в электротехнике переменного тока, например, как сердечники трансформаторов, а второй группы – для создания постоянных магнитов.

Кривая магнитной проницаемости. Эта кривая представляет собой график зависимости магнитной проницаемости ферромагнетика от напряженности магнитного поля: . Впервые была построена экспериментально Столетовым, который изучал намагничение ферромагнетиков. Ее характерный вид показан на рис. 7.13, и она может быть построена на основе кривой намагничивания.

С ростом напряженности значение достигает максимума, а затем, при достижении насыщения намагниченности, быстро падает. На практике в максимуме магнитная проницаемость может достигать значений .

Взаимодействие электронов. Последовательное описание ферромагнетизма как явления, обусловленного взаимодействием спиновых моментов электронов, дается лишь в квантовой, а не в классической теории. Ферромагнетики обладают свойством спонтанной (самопроизвольной) намагниченности. То есть, в отсутствии внешнего магнитного поля спины электронов образца взаимодействуют друг с другом так, что стремятся ориентироваться в одном направлении. Это взаимодействие спинов имеет квантовую природу и называется обменным. Электроны, как частицы с полуцелым спином, подчиняются квантовой статистике Ферми-Дирака, которая не допускает нахождения двух частиц в одном состоянии. Поэтому электроны с параллельными спинами раздвигаются в пространстве, что уменьшает потенциальную энергию их кулоновского взаимодействия. Энергией обменного взаимодействия называется разность энергий систем, образованных парами электронов с антипараллельными и параллельными спинами.

Видно, что конфигурация электронов с параллельными спинами энергетически наиболее выгодна, так как обладает наименьшим запасом потенциальной энергии. Более того, для возникновения ферромагнетизма требуется, чтобы уменьшение потенциальной энергии взаимодействия электронов за счет достижения согласованной ориентации спинов было больше, чем увеличение кинетической энергии электронов, происходящее при этом.

Каждая область с согласованной ориентацией спинов образует домен, как область самопроизвольной намагниченности. В отсутствии внешнего магнитного поля рост объема каждого домена в образце ограничивается увеличением запаса потенциальной энергии его поверхностного слоя. В силу теплового движения направления спинов электронов в разных доменах ориентированы хаотически друг по отношению к другу. Поэтому в целом образец размагничен.

В элементарной теории ферромагнетизма доказывается, что магнитная восприимчивость материала ферромагнетика без учета обменного взаимодействия оказывается такой же, как и у парамагнетика:

где соответствует постоянной Кюри.

Учет обменного взаимодействия позволяет получить магнитную восприимчивость ферромагнетика:

(7.32)

где — постоянная обменного взаимодействия, зависящая от рода материала.

В области температур материал ведет себя как парамагнетик – магнитная восприимчивость падает с ростом температуры. С уменьшением температуры, при , имеем: , что означает возникновение конечной по величине намагниченности при сколь угодно малом внешнем поле. То есть, скачкообразно возникает спонтанная намагниченность при фазовом переходе второго рода образца из парамагнитного в ферромагнитное состояние. Более точная теория дает конечный по величине скачок восприимчивости при том же фазовом переходе. При дальнейшем уменьшении температуры, когда , восприимчивость продолжает расти, но скорость ее нарастания падает. При этом материал находится в ферромагнитной фазе.

Закон Кюри-Вейсса. Согласно (7.32), для всякого ферромагнетика существует температура Кюри-Вейсса, равная . Приблизительно при этой температуре происходит фазовый переход между парамагнитной и ферромагнитной фазой образца.

Перемагничивание. При росте напряженности намагничивающего поля сначала происходит обратимое смещение границ доменов и повороты граничных стенок. Увеличиваются размеры доменов, у которых проекция вектора намагниченности на направление вектора напряженности поля положительна. Соответственно размеры остальных доменов образца уменьшаются (см. рис. 7.14).

При дальнейшем увеличении напряженности поля смещение границ доменов становится необратимым и происходит переориентация намагниченности еще сохранившихся доменов образца в направлении вектора . В результате образец состоит из одного домена с ориентацией намагниченности вдоль , что соответствует достижению насыщения намагниченности.

Антиферромагнетизм. При определенных условиях обменное взаимодействие таково, что минимум энергии взаимодействия спиновых моментов соседних атомов достигается при антипараллельной ориентации этих спинов. Происходит формирование двух структур (подрешеток) спиновых моментов. Каждая из них спонтанно намагничена (см. рис. 7.15). Подрешетки намагничены с одинаковой интенсивностью, но в противоположных направлениях. Суммарная намагниченность равна нулю. Изученная ситуация соответствует антиферромагнетизму. Примерами антиферромагнетиков служат хром и марганец. Антиферромагнетики имеют очень малую магнитную восприимчивость и ведут себя подобно слабым парамагнетикам (ср. с (7.32)):

(7.33)

где — постоянная обменного взаимодействия антиферромагнетика.

С падением температуры, как и у ферромагнетиков, происходит фазовый переход – приближенно при температуре Кюри-Вейсса , и вещество скачкообразно переходит из парамагнитной в антиферромагнитную фазу.

Ферримагнетизмимеет место, если подрешетки с противоположной спонтанной намагниченностью реализуются, но с различной интенсивностью намагничения. Поэтому имеется результирующая спонтанная намагниченность, хотя и более слабая, чем у ферромагнетиков. Вещества, проявляющие ферримагнетизм, называются ферримагнетиками или ферритами. Как и ферромагнетики, ферриты обладают остаточной намагниченностью, коэрцетивной силой. По сравнению с ферромагнетиками, ферриты имеют очень малую электропроводность — их преимущество для применения в радиотехнике.

Ферромагнитный резонансобусловлен взаимодействием спиновых магнитных моментов электронов с переменным электромагнитным полем. Это взаимодействие носит коллективный характер в пределах каждого домена. Поэтому явление резонанса в ферромагнетике проявляется на фоне согласованной прецессии спиновых магнитных моментов электронов во внешнем магнитном поле. Прецессия согласована обменным взаимодействием спинов. То есть, внутреннее магнитное поле, обусловленное спиновым взаимодействием, участвует, наряду с внешним магнитным полем, в формировании прецессии спиновой системы. Ферромагнитный резонанс наблюдается в диапазоне СВЧ – на частотах в тысячи МГц. Резонанс спиновой системы проявляется в резком изменении интенсивности переменного поля на определенной частоте, зависящей от рода материала. За счет неоднородности материала и его доменной структуры появляются дополнительные пики резонансных сигналов на других частотах. Как и парамагнитный резонанс, ферромагнитный резонанс имеет квантовую природу. Изучение спектров сигналов резонанса позволяет измерить ряд характеристик ферромагнетика: намагниченность насыщения, гиромагнитное отношение, константу анизотропии и др.

Анизотропия намагничивания. Ферромагнитные свойства монокристаллов зависят от направления намагничивания. Кривые намагничивания получаются различными в зависимости от ориентации намагничивающего поля относительно осей кристаллической решетки. Ось легкого (трудного) намагничивания определяет направление, в котором намагниченность при заданной величине поля максимальна (минимальна).

Не нашли то, что искали? Воспользуйтесь поиском:

Зависимость — магнитная индукция

Для каждого сорта ферромагнитного материала существует своя кривая намагничивания, представляющая собой зависимость магнитной индукции В от напряженности магнитного поля Я. [46]

Как следует из (3.25), для расчета сил должна быть предварительно определена зависимость магнитной индукции в зазоре от параметров магнитной системы и режима работы ЭМММ. [48]

Если потокосцепление в сердечнике с прямоугольной кривой намагничивания меняется, то это означает, что изображающая точка перемещается по вертикальному участку зависимости магнитной индукции В данного сердечника от результирующей напряженности поля Я данного сердечника. [49]

Ферриты с ППГ представляют собой группу магнитомягких поли-кристаляических материалов, применяемых в изделиях, принцип действия которых основан на скачкообразном характере зависимости магнитной индукции от напряженности магнитного поля. [51]

Магнитный поток Фт сквозь поверхность, натянутую на контур, может измениться по ряду причин — благодаря изменению формы контура и его расположения в магнитном поле, а также вследствие зависимости магнитной индукции от времени. [52]

Внутренняя оболочка ( жила) коаксиального кабеля заменена весьма длинным прямолинейным ( радиусом г — 0) проводом с током i, а внешняя оболочка — охватывающим жилу соосным тонкостенным ( толщина стенки d — 0) цилиндром с током — г. Радиус цилиндра R, Найдите зависимость магнитной индукции В ( г) от расстояния до оси кабеля. [53]

Однако, как показывает опыт, магнитный поток электромагнита находится в гораздо более сложной зависимости от Н, так как pi весьма заметно изменяется при изменении Н: сначала растет с увеличением напряженности, а затем уменьшается. Зависимость магнитной индукции ( а тем самым и потока) от напряженности магнитного поля В / ( Н) называется кривой намагничивания. Это основная характеристика магнитных материалов, по которой выбирают при конструировании машин и аппаратов нужный материал и на основе которой производят расчеты. Получают ее экспериментальным путем: изменяя силу тока, замеряют В специальными приборами. [54]

При наложении внешнего магнитного поля происходит рост объема доменов, которые имеют направление намагниченности, совпадающее или близкое к направлению напряженности поля. Зависимость магнитной индукции ферромагнитного вещества от напряженности внешнего поля называют кривой намагничивания, она имеет вид, показанный на рис. 3.4. Кривую намагничивания ферромагнетиков можно разделить на несколько участков, которые характеризуются определенными процессами намагничивания. В области слабых полей ( область /) магнитные восприимчивость и проницаемость не изменяются. Изменение магнитной индукции в этой области происходит в основном за счет обратимых процессов, которые обусловлены смещением границ доменов. [56]

Насколько уменьшатся силы притяжения FA и FB якорей электромагнитов Л и Б, если напряжение на их. Графики зависимости магнитной индукции В р воздушном зазоре от токов катушек / электромагнитов изображены на рис. 6.75. Изменения температуры катушек при снижении тока не учитывать. [57]

Магнитные поля в присутствии ферромагнетиков состоят и двух компонент: одна индуцируется возбуждающей катушкой, другая — намагниченностью самого материала. В результате зависимость магнитной индукции В от возбуждающего тока / ( кривая намагничивания) не только существенно нелинейна, но и обнаруживает гистерезис. Кривые намагничивания и гистерезиса чувствительны к химической структуре материалов технологии их создания и предыстории использования. [58]

Методы моделирования основной кривой намагничивания

Процессы, происходящие в силовых и измерительных трансформаторах, описываются системой уравнений, составленной для электрической и магнитной цепи. Магнитная цепь представляет собой сердечник, в котором замыкается магнитный поток, создаваемый магнитодвижущей силой. Для уменьшения активных потерь из-за образования вихревых токов сердечники электротехнических устройств составляют их шихтованных листов ферромагнитного материала. Под действием внешнего магнитного поля (H), созданного током в катушке, наложенной на стальной магнитопровод, происходит процесс ориентации доменов в магнитопроводе и смещение их границ. Это приводит к намагничиванию (M) стального магнитопровода, причем намагниченность увеличивается с увеличением внешнего магнитного поля. Зависимость намагниченности материала от напряжённости магнитного поля M(H) (или B(H)) называется кривой намагничивания (magnetization curve), которая обычно представлены исследователю в виде формул, графиков или таблиц. Также следует отметить, что ферромагнитный материала обладает способностью сохранять намагниченность в отсутствии внешнего магнитного поля.

При намагничивании предварительно размагниченного образца различают следующие типы зависимостей (кривых намагничивания):

— Начальная кривая намагничивания – это зависимость, которую получают при монотонном увеличении напряженности магнитного поля (Н);

— Безгистерезисная (идеальную) кривая намагничивания – это зависимость, которую получают при одновременном действии постоянного поля и переменного поля с убывающей до нуля амплитудой.

— Основная кривая намагничивания, представляющая собой геометрическое место вершин симметричных петель гистерезиса, получающихся при циклическом перемагничивании.

Начальная кривая намагничивания зависит от случайных причин, например от механических сотрясений, колебаний температуры, характера изменения намагничивающего поля и т.д. Следовательно, начальная кривая намагничивания не может быть использована для сравнительной оценки свойств различных материалов.

Рис.1. Основная кривая намагничивания (а) и безгистерезисная кривая намагничивания (б).

Основная кривая намагничивания, напротив, является важнейшей характеристикой магнитных материалов, которая не подвержена внешним факторам. Основная кривая намагничивания обычно мало отличается от начальной кривой намагничивания, но не совпадает с ней. Основная кривая намагничивания представляет собой геометрическое место вершин петель гистерезиса, полученных при циклическом перемагничивании (см. рис. 2) и отражает изменение магнитной индукции (В) от напряженности магнитного поля (Н), которое создается в материале при намагничивании. Для получения основной кривой намагничивания снимается ряд петель гистерезиса для различных токов.

Рис.2. Симметричные циклы магнитного гистерезиса и основная кривая намагничивания

Основная кривая намагничивания используется при технических расчетах магнитных цепей, когда требуется исследовать (моделировать) нелинейные индуктивные элементы. Основная кривая намагничивания представлена в виде зависимости магнитной индукции от напряженности магнитного поля B(H) или обратной функциональной зависимостью H(B). На основной кривой намагничивания принято различать три участка: начальный, соответствующий нижнему колену кривой, второй участок соответствует быстрому возрастанию индукции и третий участок соответствует насыщению стали сердечника.

В качестве примера представим в табличной форме кривую намагничивания стали 2312, которая имеет следующую зависимость:

Читайте также:  Нашел ipad как разблокировать
Оценить статью
Добавить комментарий