Конденсаторы связи 220 кв

Конденсаторы связи 220 кв

Канал связи — совокупность устройств и физических сред, передающих сигналы. С помощью каналов сигналы передаются из одного места в другое, а также переносятся во времени (при хранении информации).

Наиболее распространенные устройства, входящие в состав канал: усилители, антенные системы, коммутаторы и фильтры. В качестве физической среды часто используются пара проводов, коаксиальный кабель, волновод, среда, в которой распространяются электромагнитные волны.

С точки зрения техники связи наиболее важными характеристиками каналов связи являются искажения, которым подвергаются передаваемые по нему сигналы. Различают искажения линейные и нелинейные. Линейные искажения состоят из частотных и фазовых искажений и описываются переходной характеристикой или, что эквивалентно, комплексным коэффициентом передачи канала. Нелинейные искажения даются нелинейными зависимостями, указывающими, как изменяется сигнал при прохождении по каналу связи.

Канал связи характеризуется совокупностью сигналов, которые посылаются на передающем конце, и сигналами, которые принимаются на приемном конце. В случае, когда сигналы на входе и выходе канала являются функциями, определенными на дискретном множестве значений аргумента, канал называется дискретным. Такими каналами связи пользуются, например, при импульсных режимах работы передатчиков, в телеграфии, телеметрии, радиолокации.

Непрерывным называется канал, сигналы на выходе и входе которого представляют собой непрерывные функции. Такие каналы широко используются в телефонии, радиовещании, телевидении. Дискретные и непрерывные каналы связи широко применяются также в автоматике и телемеханике.

Несколько различных каналов могут использовать одну и ту же техническую линию связи. В этих случаях (например, в многоканальных линиях связи с частотным или временным разделением сигналов) каналы объединяются и разъединяются с помощью специальных коммутаторов или фильтров. Иногда, наоборот, один канал использует нескольких технических линий связи.

Высокочастотная связь (ВЧ-связь) — это вид связи в электрических сетях, который предусматривает использование высоковольтных линий электропередач в качестве каналов связи. По проводам линии электропередач электросетей протекает переменный ток частотой 50 Гц. Суть организации ВЧ-связи заключается в том, что те же провода используются в качестве передачи сигнала по линии, но на другой частоте.

Читайте также:  На экране появились розовые полосы

Диапазон частоты ВЧ-каналов связи – от десятков до сотен кГц. Высокочастотная связь организуется между двумя смежными подстанциями, которые соединены линией электропередач напряжением 35кВ и выше. Для того чтобы переменный ток частотой 50 Гц попадал на шины распределительного устройства подстанции, а сигналы связи на соответствующие комплекты связи, используют высокочастотные заградители и конденсаторы связи.

ВЧ-заградитель имеет небольшое сопротивление на токе промышленной частоты и большое сопротивление на частоте каналов высокочастотной связи. Конденсатор связи — наоборот: имеет большое сопротивление при частоте 50 Гц, а на частоте канала связи – малое сопротивление. Таким образом, обеспечивается попадание на шины подстанции исключительно тока частотой 50 Гц, на комплект ВЧ-связи – только сигналов на большой частоте.

Для приема и обработки сигналов ВЧ-связи на обеих подстанциях, между которыми организована ВЧ-связь, устанавливают специальные фильтры, приемопередатчики сигналов и комплекты оборудования, которые осуществляют определенные функции. Ниже рассмотрим, какие именно функции могут реализовываться с применением ВЧ-связи.

Наиболее важная функция – использование ВЧ-канала в устройствах релейной защиты и автоматики оборудования подстанции. ВЧ-канал связи используется в защитах линий 110 и 220кВ – диференциально-фазной защиты и направленно-высокочастотной защиты. По обоим концам ЛЭП устанавливают комплекты защит, которые имеют связь между собой по ВЧ-каналу связи. Благодаря надежности, быстродействию и селективности, защиты с использованием ВЧ-канала связи используются в качестве основных для каждой ВЛ 110-220кВ.

Канал для передачи сигналов релейной защиты линий электропередач (ЛЭП) называется канал релейной защиты . В технике РЗА получили наибольшее распространения три типа ВЧ защит:

дистанционная с ВЧ блокировкой,

В первых двух типах защит по ВЧ каналу при внешнем коротком замыкании передается сплошной сигнал ВЧ блокировки, в дифференциально-фазовой защите по каналу релейной защиты передаются импульсы напряжения ВЧ. Длительность импульсов и пауз примерно одинакова и равна половине периода промышленной частоты. При внешнем коротком замыкании передатчики, расположенные по обоим концам линии, работают в разные полупериоды промышленной частоты. Каждый из приемников принимает сигналы обоих передатчиков. Вследствие этого при внешнем коротком замыкании оба приемника принимают сплошной блокирующий сигнал.

При коротком замыкании на защищаемой линии происходит сдвиг фаз манипулирующих напряжений и появляются интервалы времени, когда оба передатчика остановлены. При этом в приемнике возникает прерывистый ток, используемый для создания сигнала, действующего на отключение выключателя данного конца защищаемой линии.

Обычно передатчики на обоих концах линии работают на одной частоте. Однако на линиях большой протяженности иногда выполняются каналы релейной защиты с передатчиками, работающими на разных ВЧ или па частотах с малым интервалом (1500—1700 гц). Работа на двух частотах дает возможность избавиться от вредного влияния сигналов, отраженных от противоположного конца линии. Каналы релейной защиты используют специальный (выделенный) ВЧ канал.

Существуют также устройства, которые с использованием ВЧ-канала связи, определяют место повреждения линий электропередач. Кроме того, ВЧ-канал связи может использоваться для передачи сигналов оборудования телемеханики, SCADA, САУ и других систем оборудования АСУ ТП. Таким образом, по каналу высокочастотной связи можно осуществлять контроль над режимом работы оборудования подстанций, а также передавать команды управления выключателями и различными функциями устройств РЗА.

Еще одна функция – функция телефонной связи . ВЧ-канал можно использовать для оперативных переговоров между смежными подстанциями. В современных условиях данная функция не актуальна, так как существуют более удобные способы связи между обслуживающим персоналом объектов, но ВЧ-канал может служить резервным каналом связи в случае возникновения чрезвычайной ситуации, когда будет отсутствовать мобильная или проводная телефонная связь.

Канал связи по линиям электропередачи — канал, используемый для передачи сигналов в диапазоне от 300 до 500 кгц. Используются различные схемы включения аппаратуры канала связи. Наряду со схемой фаза — земля (рис. 1), встречающейся наиболее часто благодаря своей экономичности, применяются схемы: фаза — фаза, фаза — две фазы, две фазы — земля, три фазы — земля, фаза — фаза разных линий. ВЧ заградитель, конденсатор связи и фильтр присоединения, используемые в этих схемах, являются оборудованием обработки ЛЭП для организации по их проводам ВЧ каналов связи.

Рис. 1. Структурная схема простого канала связи по линии электропередачи между двумя смежными подстанциями: 1 — ВЧ заградитель; 2 — конденсатор связи; 3 — фильтр присоединения; 4 — ВЧ кабель; 5 — устройство ТУ — ТС; в — датчики телеизмерений; 7 —приемники телеизмерений; 8 — устройства релейной зашиты или (и) телеавтоматики; 9 — АТС; 10 — абонент АТС; 11 — прямые абоненты.

Обработка линий нужна для получения стабильного канала связи. Затухание ВЧ канала по обработанным ЛЭП почти не зависит от схемы коммутации линий. В случае отсутствия обработки связь будет прерываться при отключении или заземлении концов ЛЭП. Одной из важнейших проблем связи по линиям электропередачи является нехватка частот, обусловленная малым переходным затуханием между линиями, имеющими соединение через шины подстанций .

ВЧ-каналы могут использовать для связи с оперативно-выездными бригадами, которые осуществляют ремонт участков поврежденных линий электропередач, ликвидируют повреждения в электроустановках. Для этой цели используют специальные переносные приемопередатчики.

Применяется следующая ВЧ аппаратура, подключаемая к обработанной ЛЭП:

комбинированная аппаратура для каналов телемеханики, автоматики, релейной защиты и телефонной связи;

специализированная аппаратура для какой-либо одной из перечисленных функций;

аппаратура дальней связи, подключаемая к ЛЭП через устройство присоединения непосредственно или с помощью дополнительных блоков для сдвига частот и повышения уровня передачи;

5.3. Обслуживание конденсаторов связи и отбора мощности и ВЧ заградителей

Конденсаторы связи и отбора мощности предназначены:

для комплектования делителей емкостных ТН;

обеспечения высокочастотной связи на частотах от 36 до 750 кГц в ЛЭП переменного тока 50 и 60 кГц;

телемеханики, защиты, измерения напряжения и отбора мощности.

Высокочастотные (ВЧ) заградители предназначены для обеспечения передачи сигналов противоаварийной автоматики, релейной защиты, телефонной связи, телемеханики, промодулированных высокой частотой (24—1000 кГц) по фазовому проводу или грозозащитному тросу высоковольтной (10—750 кВ) ЛЭП.

ВЧ заградитель необходим для исключения шунтирования ВЧ сигнала обмоткой фазового трансформатора.

Заградитель представляет собой ВЧ фильтр, который включается в рассечку провода высоковольтной ЛЭП для предотвращения потерь ВЧ сигнала.

Конденсаторы связи и отбора мощности применяются на ПС в измерительных устройствах типа НДЕ, в специальных устройствах отбора мощности от ЛЭП, а также для образования ВЧ каналов защит, телемеханики и телефонной связи по схеме провод ЛЭП — земля.

В основу использования линий высокого напряжения для одновременной передачи электрической энергии и ВЧ сигналов положено свойство конденсаторов изменять сопротивление в зависимости от частоты проходящего через них тока, что видно из следующей формулы:

Поэтому конденсатор, запирая токи при низких частотах, не препятствует прохождению токов ВЧ.

Конденсатор состоит из обкладок в виде тонких металлических лент с проложенными между ними слоями изолирующей бумаги. К этим лентам припаивают выводы и свертывают их в плоские секции — элементарные конденсаторы. Конденсатор заданной емкости для работы в установках с заданным номинальным напряжением получают параллельным и последовательным соединением определенного числа элементарных конденсаторов.

Собранный конденсатор помещают в фарфоровый корпус, наполненный трансформаторным маслом. В качестве выводов конденсаторов используются стальные крышки, закрывающие корпус с торца. Внутренняя полость корпуса с атмосферой не сообщается. Изменения давления масла в корпусе компенсируются сжатием или выпучиванием стенок специальных коробок расширителей, погруженных в масло. Масса воздуха в коробках расширителей постоянная. Воздух в расширителях не соединяется ни с маслом, ни с атмосферным воздухом.

Конденсаторы устанавливают на изолирующих подставках, служащих для предотвращения утекания токов ВЧ в землю, минуя аппаратуру ВЧ поста.

Применение конденсаторов и заградителей в схемах ВЧ каналов. При помощи конденсаторов к линиям ВН через фильтры подключают ВЧ посты, передающие и принимающие ВЧ сигналы.

Фильтры служат для отделения аппаратов НН от непосредственного контакта с конденсаторами и исключения влияния на них токов промышленной частоты.

Утечка токов ВЧ за пределы ЛЭП предотвращается заградителями, выполненными в виде резонансных контуров (силовых катушек индуктивности и регулируемых конденсаторов, размещаемых внутри катушек). Для токов резонансной частоты сопротивление заградителей очень большое, а для токов промышленной частоты оно очень мало, и эти токи беспрепятственно проходят на шины ПС.

Заградители подвешивают на гирляндах изоляторов (иногда устанавливают на опорах) и включают в рассечку провода линии, рабочий ток которой проходит через силовые катушки.

Осмотры конденсаторов связи и заградителей производят одновременно с осмотром аппаратов, установленных в РУ. Кроме того, при тяжелых метеорологических условиях (гололед, мокрый снег, сильный ветер) производятся внеочередные осмотры. При осмотрах обращают внимание на чистоту поверхности фарфоровых корпусов, отсутствие в них трещин, а также на отсутствие следов просачивания масла через уплотнения фланцев и торцевых крышек.

Течь масла через герметичные конденсаторы связи недопустима, поскольку даже при малой, но продолжительной течи в конденсаторе может иссякнуть избыточное давление и внутрь конденсатора попадет свежий воздух, что приведет к увлажнению масла и повреждению конденсатора.

При осмотре заградителей проверяют состояние контактов в местах присоединения к заградителю провода линии и спуска к линейному разъединителю, убеждаются в целости жил проводов и надежности механического крепления заградителя и подвесных изоляторов.

В силу своей значительной массы подвесные заградители раскачиваются при сильном ветре, что может привести к нарушению креплений и падению заградителей.

На практике часто имеют место нарушения контактных соединений, а также излом жил проводов вблизи контактных зажимов заградителей, что приводит к обрыву и перегоранию проводов.

Верхняя обкладка конденсатора связи находится под фазным напряжением, а нижняя заземлена через фильтр присоединения. Поэтому падение фазного напряжения происходит на сопротивлении всех элементов конденсатора и фильтра присоединения.

Если в последовательной цепи конденсатор — фильтр присоединения — земля произойдет обрыв, то в схеме появится опасное напряжение. Поэтому для безопасного производства ремонтных работ на фильтре без снятия напряжения с ЛЭП или при эксплуатации необходимо включать заземляющий разъединитель; при этом следует заземлить нижнюю обкладку конденсатора.

Любые работы на конденсаторах связи, находящихся под напряжением, а также касание изолирующей подставки или ее фланцев недопустимы даже при включенном заземляющем разъединителе.

Конденсаторы связи предназначены для использования в линиях электропередач на частоте 40-500 кГц с номинальным напряжением 35, 110, 150, 220, 330, 500 кВ. На основе таких конденсаторов делаются измерительные устройства (делители, трансформаторы напряжения) — для измерения напряжений ЛЭП, а также устройства отбора мощности для питания измерительной аппаратуры и силового оборудования.

Для комплектации конденсаторов связи применяются изолирующие подставки, назначение которых состоит в предотвращении ухода токов высокой частоты в землю, минуя аппаратуру.

Типономинал Тангенс угла потерь Габаритные размеры, мм Масса, кг, не более
диаметр высота
СМ-66/√3-4,4 У1, ХЛ1, Т1 3,0*10 -3 280 890 75,0
СМБ-66/√3-4,4 У1 91,0
СМП-66/√3-4,4 У1 1300 118
СМПБ-66/√3-4,4 У1 135
СМВ-66/√3-4,4 У1, ХЛ1, Т1 935 75,0
СМБВ-66/√3-4,4 У1 91,0
СМПВ-66/√3-4,4 У1 1345 118
СМПБВ-66/√3-4,4 У1 135
СМ-110/√3-6,4 У1, Т1 330 1170 154
СМ-110/√3-6,4 ХЛ1 1380 198
СМВ-110/√3-6,4 У1, Т1 1215 154
СМВ-110/√3-6,4 ХЛ1 1425 198
СМБ-110/√3-6,4 У1, Т1 1380
СМБВ-110/√3-6,4 У, Т11 1425
СМП-110/√3-6,4 У1 1580 210
СМПВ-110/√3-6,4 У1 1625
СМПБ-110/√3-6,4 У1 1790 254
СМПБВ-110/√3-6,4 У1 1835
СМА-66/√3-4,4 УХЛ1 2,5*10 -3 240 917 42,0
СМАВ-66/√3-4,4 УХЛ1 950
СМАП-66/√3-4,4 УХЛ1 1353 61,0
СМАПВ-66/√3-4,4 УХЛ1 1386
СМА-110/√3-6,4 УХЛ1 313 1272 140
СМАВ-110/√3-6,4 УХЛ1 1305
СМАП-110/√3-6,4 УХЛ1 1705 182
СМАПВ-110/√3-6,4 УХЛ1 1738
СМА-166/√3-14 УХЛ1 485 1454 330
СМА-133/√3-18,6 УХЛ1
СМАВ-166/√3-14 УХЛ1 1486
СМАВ-133/√3-18,6 УХЛ1
СМАБ-166/√3-14 УХЛ1 1454
СМАБВ-166/√3-14 УХЛ1 1486
СМА-166/√3-18 УХЛ1 1454
СМАВ-166/√3-18 УХЛ1 1486
СМАБ-166/√3-18 УХЛ1 1454
СМАБВ-166/√3-18 УХЛ1 1486
СММ-20/√3-35 У1 305х135х345 8,80
СММ-20/√3-107 У1 305х135х345 15,4
СМП-66/√3-4,4 ХЛ1 3,0*10 -3 280 1322 135
СМПВ-66/√3-4,4 ХЛ1 1345
СМ-110/√3-3,2 У1 330 1380 198
СМА-110/√3-3,2 УХЛ1 2,5*10 -3 313 1272 140
СМП-110/√3-6,4 ХЛ1 3,0*10 -3 330 1790 254
СМПВ-110/√3-6,4 ХЛ1 1835

Обозначения конденсаторов связи

  • первая цифра — номинальное напряжение в киловольтах;
  • вторая — емкость в нанофарадах.
  • СМА — конденсатор в фарфоровой армированной покрышке;
  • Б — категория электрооборудования по внешней изоляции;
  • В — с выводом;
  • П — совмещенный с изолирующей подставкой.

Изолирующие подставки для конденсаторов связи

Типономинал Габаритные размеры, мм Масса, кг, не более Применяются для комплектации
высота диаметр основание
ПИ-1У1, ХЛ1, Т1 430 280 350х350 50 СМ-66/√3-4,4 У1, Т1
ПИ-2 У1, ХЛ1, Т1 330 400х400 66 СМ-110/√3-6,4 У1, Т1
ПИ-4 УХЛ1 450 240 240х240 24 СМА-66/√3-4,4 УХЛ1
ПИ-5 УХЛ1 445 313 350х350 65 СМА-110/√3-6,4 УХЛ1
ПИ-6 УХЛ1 510 485 510х510 138 СМА-166/√3-14 УХЛ1
СМА-166/√3-18 УХЛ1

630048 | г. Новосибирск | ул. Немировича-Данченко, д.120/2 | тел./факс: (383) 233-00-63 | e-mail: [email protected]

© Оформление и материалы сайта ООО «Восток-Энерго», 207-2015

Оценить статью
Добавить комментарий