Коэффициент расхода жидкости через отверстие

Коэффициент расхода жидкости через отверстие

Рассмотрим различные случаи истечения жидкости из резервуаров, баков, котлов через отверстия и насадки (коротки трубки различной формы) в атмосферу или пространство, заполненное газом или той же жидкость. В процессе такого истечения запас потенциальной энергии, которым обладает жидкость, находящаяся в резервуаре, превращается в кинетическую энергию свободной струи.

Основным вопросом, который интересует в данном случае, является определение скорости истечения и расхода жидкости для различных форм отверстий и насадков.

Рассмотрим большой резервуар с жидкостью под давлением Р0, имеющий малое круглое отверстие в стенке на достаточно большой глубине Н0 от свободной поверхности (рис.5.1).

Степень сжатия оценивается коэффициентом сжатия.

где Sс и Sо — площади поперечного сечения струи и отверстия соответственно; dс и dо — диаметры струи и отверстия соответственно.

Скорость истечения жидкости через отверстие такое отверстие

где Н — напор жидкости, определяется как

φ- коэффициент скорости

где α — коэффициент Кориолиса;
ζ- коэффициент сопротивления отверстия.

Расход жидкости определяется как произведение действительной скорости истечения на фактическую площадь сечения:

Произведение ε и φ принято обозначать буквой и называть коэффициентом расхода, т.е. μ = εφ.

В итоге получаем расход

где ΔР — расчетная разность давлений, под действием которой происходит истечение.

При помощи этого выражения решается основная задача — определяется расход.

Значение коэффициента сжатия ε, сопротивления ζ, скорости φ и расхода μ для круглого отверстия можно определить по эмпирически построенным зависимостям. На рис.5.3 показаны зависимости коэффициентов ε, ζ и μ от числа Рейнольдса, подсчитанного для идеальной скорости

Рис. 5.3. Зависимость ε, φ и от числа Reu Рис. 5.4. Инверсия струй

При истечении струи в атмосферу из малого отверстия в тонкой стенке происходит изменение формы струи по ее длине, называемое инверсией струи (рис.5.4). Обуславливается это явление в основном действием сил поверхностного натяжения на вытекающие криволинейные струйки и различными условиями сжатия по периметру отверстия. Инверсия больше всего проявляется при истечении из некруглых отверстий.

Несовершенное сжатие наблюдается в том случае, когда на истечение жидкости через отверстие и на формирование струи оказывает влияние близость боковых стенок резервуара (рис.5.5).

Так как боковые стенки частично направляют движение жидкости при подходе к отверстию, то струя по выходе из отверстия сжимается в меньшей степени, чем из резервуара неограниченных размеров, как это было описано в п.5.1.

При истечении жидкостей из цилиндрического резервуара круглого сечения через круглое отверстие, расположенное в центре торцевой стенки, при больших числах Re коэффициент сжатия для идеальной жидкости можно найти по формуле, представленной Н.Е. Жуковским:

где n — отношение площади отверстия Sо к площади поперечного сечения резервуара S1

Часто приходится иметь дело с истечением жидкости не в атмосферу, а в пространство, заполненное этой же жидкостью (рис.5.6). такой случай называется истечением под уровень, или истечением через затопленное отверстие.

В этом случае вся кинетическая энергия струи теряется на вихреобразование, как при внезапном расширении.

Скорость истечения в сжатом сечении струи

где φ — коэффициент скорости;
Н — расчетный напор,

Таким образом, имеем те же расчетные формулы, что и при истечении в воздух (газ), только расчетный напор Н в данном случае представляет собой разность гидростатических напоров по обе стенки, т.е. скорость и расход жидкости в данном случае не зависят от высот расположения отверстия.

Коэффициенты сжатия и расхода при истечении под уровень можно принимать те же, что и при истечении в воздушную среду.

Внешним цилиндрическим насадком называется короткая трубка длиной, равной нескольким диаметрам без закругления входной кромки (рис. 5.7). На практике такой насадок часто получается в тех случаях, когда выполняют сверление в толстой стенке и не обрабатывают входную кромку. Истечение через такой насадок в газовую среду может происходить в двух режимах.

Первый режим — безотрывный режим. При истечении струя, после входа в насадок сжимается примерно так же, как и при истечении через отверстие в тонкой стенке. Затем струя постепенно расширяется до размеров отверстия из насадка выходит полным сечением (рис.5.7).

Коэффициент расхода μ, зависящий от относительной длины насадка l / d и числа Рейнольдса, определяется по эмпирической формуле:

Так как на выходе из насадка диаметр струи равен диаметру отверстия, то коэффициент сжатия ε = 1 и, следовательно, μ = φ , а коэффициент сопротивления ζ = 0,5.

Если составить уравнение Бернулли для сжатого сечения 1-1 и сечения за насадком 2-2 и преобразовать его, то можно получить падение давления внутри насадка

При некотором критическом напоре Нкр абсолютное давление внутри насадка (сечение 1-1) становится равным нулю (P1 = 0), и поэтому

Следовательно, при Н > Нкр давление P1 должно было бы стать отрицательным, но так как в жидкостях отрицательных давлений не бывает, то первый режим движения становится невозможным. Поэтому при Н Нкр происходит изменение режима истечения, переход от первого режима ко второму (рис.5.8).

Второй режим характеризуется тем, что струя после сжатия уже не расширяется, а сохраняет цилиндрическую форму и перемещается внутри насадка, не соприкасаясь с его стенками. Истечение становится точно таким же, как и из отверстия в тонкой стенке, с теми же значениями коэффициентов. Следовательно, при переходе от первого режима ко второму скорость возрастает, а расход уменьшается благодаря сжатию струи.

При истечении через цилиндрический насадок под уровень первый режим истечения не будет отличаться от описанного выше. Но при Н > Нкр перехода ко второму режиму не происходит, а начинается кавитационный режим.

Таким образом, внешний цилиндрический насадок имеет существенные недостатки: на первом режиме — большое сопротивление и недостаточно высокий коэффициент расхода, а на втором — очень низкий коэффициент расхода. Недостатком также является возможность кавитации при истечении под уровень.

Внешний цилиндрический насадок может быть значительно улучшен путем закругления входной кромки или устройства конического входа. На рис.5.9 даны различные типы насадков и указаны значения соответствующих коэффициентов.

Конически сходящиеся и коноидальные насадки применяют там, где необходимо получить хорошую компактную струю сравнительно большой длины при малых потерях энергии (в напорных брандспойтах, гидромониторах и т.д.). Конически сходящиеся насадки используют для увеличения расхода истечения при малых выходных скоростях.

Рассмотрим случай опорожнения открытого в атмосферу сосуда при постоянно уменьшающемся напоре, при котором течение является неустановившемся (рис.5.10).

Однако если напор, а следовательно, и скорость истечения изменяются медленно, то движение в каждый момент времени можно рассматривать как установившееся, и для решения задачи применить уравнение Бернулли.

Обозначим переменную высоту уровня жидкости в сосуде за h, площадь сечения резервуара на этом уровне S, площадь отверстия Sо, и взяв бесконечно малый отрезок времени dt, можно записать следующее уравнение объемов:

где dh — изменение уровня жидкости за время dt.

Отсюда время полного опорожнения сосуда высотой Н

Если будет известен закон изменения площади S по высоте h, то интеграл можно подсчитать. Для призматического сосуда S = const (рис.5.11), следовательно, время его полного опорожнения

Из этого выражения следует, что время полного опорожнения призматического сосуда в два раза больше времени истечения того же объема жидкости при постоянном напоре, равном первоначальному.

Рис. 5.11. Опорожнение призматического резервуара Рис. 5.12. Опорожнение непризматического резервуара

Для определения времени истечения жидкости из горизонтального цилиндрического сосуда (цистерны) (рис. 5.12) выразим зависимость переменной площади S от h:

где l — длина цистерны; D — диаметр цистерны.

Тогда время полного опорожнения такой цистерны, т.е. время изменения напора от h1 = D до h2 = 0, получится равным

Во многих водозаборных и водопропускных гидротехнических сооружениях расходы воды проходят через отверстия, перекрываемые затворами. Затворы поднимают на определенную высоту над дном и пропускают через отверстия необходимые расходы. Чаще всего на гидромелиоративных сооружениях устраивают отверстия прямоугольного сечения, истечение из которых и рассмотрим.

Отверстия могут быть незатопленными (истечение свободное) и затопленными, когда уровень воды за затвором влияет на истечение.

Если отверстие незатопленное, то вытекающая из-под затвора струя находится под атмосферным давлением (рис. 5.13). При истечении через затопленное отверстие струя за затвором находится под некоторым слоем воды (рис. 5.14).

Когда затвор приподнят над дном, вытекающая из-под него струя испытывает сжатие в вертикальной плоскости. На расстоянии, примерно равном высоте отверстия а (высоте поднятия затвора), наблюдается наиболее сжатое сечение. Глубина в сжатом сечении hc связана с высотой отверстия а следующей зависимостью:

где ε’ — коэффициент вертикального сжатия струи.

Коэффициент вертикального сжатия ε’ зависит от отношения высоты отверстия а к напору (глубине воды перед затвором) Н. Для ориентировочных расчетов можно принимать ε’ = 0,64.

Если составить уравнение Бернулли для сечений, проведенных перед затвором и в сжатом сечении, после преобразований получим:

Глубина hz определяется из зависимости

а hб — глубина в отводящем канале (бытовая глубина).

Если вытекающая из отверстия или насадка струя попадает на неподвижную стенку, то она с определенным давлением воздействует на нее. Основное уравнение, по которому вычисляется давление струи на площадку, имеет вид

На рис. 5.15 приведены наиболее часто встречающиеся в практике ограждающие поверхности (преграды) и уравнения, по которым вычисляется давление струи на соответствующую поверхность.

Величина давления струи, естественно, зависит от расстояния насадка до преграды. С увеличением расстояния струя рассеивается и давление уменьшается. Соответствующие исследования показывают, что в данном случае струя может быть разбита на три характерные части: компактную, раздробленную и распыленную (рис.5.16).

В пределах компактной части сохраняется цилиндрическая форма струи без нарушения сплошности движения. В пределах раздробленной части сплошность потока нарушается, причем струя постепенно расширяется. Наконец, в пределах распыленной части струи происходит окончательный распад потока на отдельные капли.

Истечение жидкости через отверстие может происходить при постоянном и переменном напоре. Если истечение жидкости через отверстие происходит в атмосферу или другую газовую среду, то такое отверстие называется незаполненным. Если же истечение жидкости идет под уровень, а не в атмосферу -заполненным.

Сжатие называют неполным, если при подходе к отверстию поток с одной или нескольких сторон не испытывает сжатие.

Сжатие называют полным(совершенным), если расстояние от любой стороны контура до свободной поверхности жидкости или края стенки, в которой расположено отверстие, не будет меньше устроенного поперечного размера отверстия.

Отверстие в тонкой стенке- это отверстие, диаметр которого минимум в 3 раза больше толщины стенки, т.е. d0>3

Насадком называется короткая труба длиной от 3 до 5 его диаметров, присоединенная к отверстию. При расчете насадков потерями напора по длине обычно пренебрегают.

Скорость истечения и вытекающий расход рассчитываются по общим формулам для отверстия и насадка, выведенным на основе уравнения Бернулли. Общими являются гидравлические характеристики: коэффициенты расхода, скорости, сжатия, сопротивления. Однако коэффициенты расхода для отверстия и насадка различны по величине, что связанно с различной картиной движения жидкости в них (рис.28 стр 55)

При истечении жидкости, через отверстие в тонкой стенке на некотором расстоянии от стенки, происходит сжатие струи. Площадь сечения струи будет меньше площади отверстия.(рис 27 а стр.55)

При истечении жидкости через насадок после входа в насадок жидкость сжимается примерно так же, как и при истечении через отверстие в тонкой стенке, а затем струя постепенно расширяется до размеров отверстия, и из насадка выходит полным сечением(рис.27 б, стр.55)

Сжатие струи характеризуется коэффициентом сжатия -отношение площади сечения струи в месте наибольшего сжатия к площади сечения отверстия.

Где Sc-площадь живого сечения струи

S0-площадь отверстия

Коэффициент сжатия для круглых отверстий равен 0,64, а для цилиндрических насадков равен 1.

Для вывода уравнений расхода и скорости истечения через отверстие и насадок при постоянном уровне запишем уравнение Бернулли для идеальной жидкости для двух живых сечений 1-1 и 2-2, за плоскость сравнения примем сечение 2-2(рис.29. на стр.56)

Скорость в сечении 1-1 v1=0, скорость в сечении 2-2 v2=vт (vт- теоретическая скорость истечения жидкости.)

Тогда

Пусть у поверхности жидкости в резервуаре, давление равно атмосферному и истечение через отверстие происходит в пространство с атмосферным давлением, т.е p1=p2=pатм.

И теоретическая скорость истечения в этом случае рассчитывается:

Для реальной жидкости учитываются потери напора в сечении 2-2. Они обусловлены потерей напора hп на местном сопротивлении и определяется по формуле:

-коэффициент местного сопротивления

Тогда формула для расчета действительной скорости истечения через отверстие будет выглядеть следующим образом:

Величина называется коэффициентом скорости и обозначается.

Коэффициент скорости представляет собой отношение действительной скорости истечения к теоретической, определяется опытным путем.

Зная скорость истечения жидкости можно определить расход жидкости через отверстие:

Где

Где -коэффициент сжатия струи,

-коэффициент скорости

Произведение коэффициента сжатия струи на коэффициент скорости назыавается коэффициентом расхода и обозначается

Коэффициентом расхода называется отношение действительного расхода к теоретическому:

Тогда

При работе с жидкостью возникает необходимость расчета ис­течения жидкости из отверстий и щелей, предусмотренных конст­рукцией аппарата или появившихся при аварии. Для анализа такого течения рассмотрим истечение жидкости из резервуара через малое круглое отверстие, в тонкой стенке в атмосферу или в пространство, заполненное газом или той же жидкостью. Пусть отверстие рас­положено на достаточно большой глубине Н под уровнем свобод­ной поверхности жидкости и через него жидкость вытекает в воз­душное пространство (рис. 1.12, а).

Это классическая задача, которую исследовал еще Ньютон. В этом течении потенциальная энергия жидкости в поле тяготения Земли превращается в кинетическую энергию струи жидкости. Нас интересует величина скорости, которую достигает жидкость и ее объемный расход. Пусть отверстие имеет острую кромку с внутрен­ней стороны. Частицы жидкости втекают в отверстие по плавным траекториям из всего объема резервуара. Никакая линия тока не имеет нулевого радиуса кривизны, потому что жидкость обладает инерционной массой и для очень малого радиуса поворота необ­ходим очень большой перепад давления. Крайние линии тока от­рываются от стенок и струя несколько сжимается, получив площадь сечения Sc меньшую, чем площадь отверстия S0. Это отношение площадей называется коэффициентом сжатия струи e=Sc/S0 Анализ уравнения Бернулли дает теоретическое значение для ско­рости истечения идеальной (невязкой) жидкости в виде уравнения Торичелли v=(2gH) 1/2 . С учетом потерь механической энергии на трение и вихреобразование скорость истечения оказывается ме­ньше

V=φ(2gH) 1 ‘ 2 ,

где — коэффициент скорости, φ=0,97 ч-0,98. Объемный расход жидкости, вытекающей из отверстия,

Q = μS0(2gH) 1 ‘ 2 ,

где ц — коэффициент расхода, который в широком диапазоне зна­чений числа Рейнольдса можно считать равным μ=0,62: μ=φε

Такая же закономерность получается для отверстия, расположен­ного на боковой вертикальной стенке сосуда (см. рис. 1.12, б). Здесь под величиной Н следует понимать расстояние от свободной поверхности до центра тяжести площади сечения малого отверстия.

В случае больших отверстий, вертикальный размер сечения ко­торых сравним с высотой Н, уже нельзя считать, что напор H оста­ется постоянным для всех точек сечения. Рассмотрим случай прямо­угольного отверстия шириной сечения Ь и высотой H, меняющейся от значения H1 до Нг. Элементарный слой жидкости с высотой dh, находящийся ниже свободной поверхности на величину h, будет иметь объемный расход

dQ=μb dh

Рис. 1.13. Схема течения воды через не затопленный водослив с тонкой стенкой

Интегрируя это равенство по h от значения напора H1 до значения H2 получим для объемного расхода через все прямоугольное отверстие Q= (2/3)μb 2g [H2 3 ‘ 2 -H1 3 ‘ 2 ].

Если струя жидкости пере­ливается через вырез в стенке, расположенной перпендикуля­рно потоку, то такое течение называется водосливом. Од­ним из наиболее простых явля­ется водослив с тонкой стенкой, приведенный на рис. 1.13.

Высота превышения поверхности воды верхней кромки стенки, обозначен­ная на рис. 1.13 через H, называется статическим напором водосли­ва. Ширину водослива, измеряемую в направлении, перпендикуляр­ном плоскости рисунка, обозначим через Ь. Нижним бьефом назы­вается часть потока, расположенная ниже стенки по течению.

Будем рассматривать водослив с тонкой стенкой, в котором уровень жид­кости в нижнем бьефе расположен ниже ребра стенки. Такой водо­слив называется незатопленным.

Основной величиной, интересующей инженера, является объем­ный расход жидкости через водослив. Он определяется по теории истечения жидкости из отверстия, если в последней формуле для прямоугольного отверстия положить H1 = 0, H2 = H,

Q = (2/3)μb 2gH 3 ‘ 2 .

Обозначая через т величину (2/3)д, получим основную зависимость теории водосливов

Q=mb(2g) ll 2 H 312 ,

где т — коэффициент расхода водослива. Эксперименты дают зна­чения т в пределах 0,42 — 0,50 для течений воды в водосливе метровых размеров.

4 Гидравлический удар в трубопроводах

Называя жидкость несжимаемой или капельной, мы обычно имеем в виду малую ее сжимаемость сравнительно с газами, при изменении давления на 0,1 МПа объем жидкости изменяется всею на сотые доли процента. Есть однако процессы, при которых или изменения объема существенны и ими нельзя пренебрегать. К их числу относится большая группа динамических процессов, связан с распространением волн давления в трубопроводах, в частно­сти, явление гидравлического удара. Гидравлический удар (гидроудар) в трубопроводе – это мгновенный скачок давления воды в водонапорных трубах, связанный с резким изменением скорости движения потока воды. В зависимости от направления скачка давления гидроудар разделяют на:

1 Положительное давление в трубопроводе возрастает из-за резкого перекрытия трубы или включения насоса;

2 Отрицательный когда давление в трубопроводе падает из-за выключения насоса или открытия заслонки.

Для систем водоснабжения и отопления опасен первый вариант. Слишком большой скачок давления может повредить водопроводные трубы, вызывая продольные трещины и раскол, нарушить герметичность запорной арматуры, вывести из строя водопроводное оборудование (насосы, теплообменники). Поэтому гидравлический удар нужно предотвращать и/или уменьшать его силу.

Причина гидроудара

В автономной системе водоснабжения загородного дома, когда давление в водопроводе создаётся, например, скважинным насосом, гидроудар возникает при резком прекращении потребления воды, когда перекрывается кран. Поток воды, который двигался к трубопроводу, не может мгновенно остановиться и по инерции «ударяется» в образовавшийся при закрытии крана водопроводный «тупик». Реле давление в этом случае не спасает от гидроудара, а только реагирует на него, отключая насос уже после того, как кран перекрыт и давление превысило максимальное значение. Выключение насоса тоже не происходит мгновенно, так же как и остановка потока воды в трубопроводе.

Защита от гидроудара

Сила гидроудара зависит от скорости потока воды в трубе до и после перекрытия трубы: чем выше скорость потока, тем сильнее будет удар при его резкой остановке. В свою очередь сама скорость потока зависит от диаметра трубопровода: чем больше диаметр трубы, тем ниже скорость потока воды в ней при одинаковом расходе воды. Таким образом, использование труб большего диаметра ослабляет гидроудар.

Второй способ ослабить силу гидравлического удара – это увеличить время перекрытия трубопровода (или включения насоса). Для постепенного перекрытия трубы можно использовать запорные краны вентильного типа.

Для насосов есть комплекты плавного пуска, которые не только позволяют избежать гидроударов при включении, но и продлевают срок службы самого насоса.

Наконец, третий способ защиты от гидроудара – это использование демпферного устройства – мембранного расширительного бака, который будет «гасить» скачки давления.

ЗАКЛЮЧЕНИЕ

Данная мне тема является очень актуальной при проектировании водоснабжения и водоотведения жилых и промышленных зданий и сооружений, правильного подбора сечений труб и отводов а так же защиту от гидравлического удара.

Читайте также:  Наматрасник топпер что это
Оценить статью
Добавить комментарий