Никель и серная кислота реакция

Никель и серная кислота реакция

Содержание

Никель — ковкий и пластичный металл. Никель — ферромагнетик. На воздухе – стабилен. На поверхности находится защитная пленка NiO, которая защищает металл от дальнейшего окисления.

С H2O и парами воды, содержащимися в воздухе, никель тоже не реагирует. Практически не взаимодействует никель и с такими кислотами, как серная, фосфорная, плавиковая и некоторыми другими.

С O2 реагирует только при температуре выше 800° С.

Оксид никеля обладает основными свойствами. Он существует в 2-х модификациях: низкотемпературной (гексагональная решетка) и высокотемпературной (кубическая решетка).

С галогенами, серой реагирует только при температуре с образованием NiHal2 и NiS. При взаимодействии с С, P образуются: карбид Ni3C, фосфиды – Ni5P2, Ni2P, Ni3P.

С неметаллами (N2) реакция протекает при оптимальных условиях.

Существуют растворимые в воде соли NiSO4, Ni(NO3)2 и многие другие, которые образуют кристаллогидраты NiSO4·7Н2О, Ni(NO3)2·6Н2О.

Если добавить щелочь к раствору соли никеля (II), то выпадет зеленый осадок гидроксида никеля:

Ni(OH)2 обладает слабоосновными свойствами. При взаимодействии с щелочью:

Содержание
  1. Применение никеля и его соединений.
  2. Содержание
  3. Происхождение названия [ править | править код ]
  4. История [ править | править код ]
  5. Физические свойства [ править | править код ]
  6. Химические свойства [ править | править код ]
  7. Нахождение в природе [ править | править код ]
  8. Месторождения никелевых руд [ править | править код ]
  9. Природные изотопы никеля [ править | править код ]
  10. Получение [ править | править код ]
  11. Применение [ править | править код ]
  12. Сплавы [ править | править код ]
  13. Никелирование [ править | править код ]
  14. Производство аккумуляторов [ править | править код ]
  15. Химическая технология [ править | править код ]
  16. Радиационные технологии [ править | править код ]
  17. Медицина [ править | править код ]
  18. Монетное дело [ править | править код ]
  19. Музыкальная промышленность [ править | править код ]
  20. Цены на никель [ править | править код ]
  21. Биологическая роль [ править | править код ]
  22. Физиологическое действие [ править | править код ]

Применение никеля и его соединений.

Наибольшее применение никель находит в производстве нержавеющей стали и сплавов. К сплавам, в которых потребляется много никеля, относятся:

– монель-металл (Ni, Cu, Fe, Mn), широко используемый в химической аппаратуре, судостроении, для изготовления отстойников и крышек;

– нихром и хромель (Ni, Cr), используемые в виде проволоки для реостатов, тостеров, утюгов, обогревателей;

– инвар (Ni, Fe), применяемый благодаря очень низкому коэффициенту расширения для изготовления маятников в часах и измерительных рулетках;

– пермаллой (Ni, Fe), используемый в технологии морских кабелей и электропередачи благодаря прекрасной магнитной восприимчивости;

– нейзильбер (Ni, Cu, Zn) – для изготовления домашней утвари;

– алнико (Ni, Co, Fe, Al) – мощный магнитный материал, используемый для изготовления мелкого инструмента, обладающего свойствами постоянного магнита.

Никелевые покрытия давно применяют в декоративных целях и для защиты от коррозии многих основных металлов, хотя часто заменяют и хромовым покрытием.

Реакция с концентрированной серной кислотой
Ni + 2H2SO4(конц. ) = NiSO4 + SO2↑ + 2H2O (2)
В данном случае, чтобы понять механизм протекания реакции, лучше воспользоваться методом электронно-ионного баланса.
SO4(2-) + 2e + 4H(+) = SO2↑ + 2H2O | 1 – восстановление
Ni(0) – 2e = Ni(2+) | 1 – окисление
Суммарно
Ni(0) + SO4(2-) + 4H(+) = Ni(2+) + SO2↑ + 2H2O
Свяжем 2 иона Н (+) и ион SO4(2-) в молекулу серной кислоты.
Ni(0) + Н2SO4 + 2H(+) = Ni(2+) + SO2↑ + 2H2O
Чтобы получить уравнение в молекулярном виде, добавим в левую и правую часть уравнения ион SO4(2-), который будет участвовать в реакции ионного обмена.
Ni + 2H2SO4 = NiSO4 + SO2↑ + 2H2O

По условию m1(Ni) = m2(Ni), значит, в и в первой, и второй реакциях прореагировало одинаковое количество никеля.
n1(Ni) = n2(Ni), тогда количество вещества прореагировавшей серной кислоты в первой и второй реакциях.
n1(H2SO4) = n2(H2SO4)/2

Как видим, в реакции никеля с концентрированной серной кислотой прореагировало в два раза больше количества вещества серной кислоты, чем в реакции с разбавленной серной кислотой.
Причина такого различия кроется в том, что в первой реакции окислителем являются ионы водорода Н (+), а во второй – ионы SO4(2-). В первой реакции ионы SO4(2-) участвуют только в реакции ионного обмена. Во второй реакции один моль ионов SO4(2-) участвует в качестве окислителя в окислительно-восстановительной реакции, а второй моль ионов SO4(2-) участвует в реакции ионного обмена. Поэтому на реакцию никеля с концентрированной серной кислотой расходуется в два раза больше ионов SO4(2-), чем на реакцию с разбавленной серной кислотой. Значит, в пересчете на 100% концентрацию количество вещества серной кислоты, израсходованное на реакцию никеля с концентрированной серной кислотой будет в два раза больше, чем израсходованное на реакцию с разбавленной кислотой.

Читайте также:  Масло зверобоя как использовать
Никель
← Кобальт | Медь →

28 Ni

Pd
Внешний вид простого вещества серебристо-белый металл Свойства атома Название, символ, номер Ни́кель / Niccolum (Ni), 28 Атомная масса
(молярная масса) 58,6934(4) [1] а. е. м. (г/моль) Электронная конфигурация [Ar] 3d 8 4s 2 Радиус атома 124 пм Химические свойства Ковалентный радиус 115 пм Радиус иона (+2e) 69 пм Электроотрицательность 1,91 (шкала Полинга) Электродный потенциал -0,25 В Степени окисления 0, +2, +3 Энергия ионизации
(первый электрон) 736,2 (7,63) кДж/моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 8,902 г/см³ Температура плавления 1726 K (1453 °C, 2647 °F) Температура кипения 3005 K (2732 °C, 4949 °F) Уд. теплота плавления 17,61 кДж/моль Уд. теплота испарения 378,6 кДж/моль Молярная теплоёмкость 26,1 [2] Дж/(K·моль) Молярный объём 6,6 см³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированая Параметры решётки 3,524 Å Температура Дебая 375 K Прочие характеристики Теплопроводность (300 K) 90,9 Вт/(м·К) Номер CAS 7440-02-0 3d 8 4s 2

Ни́кель — химический элемент десятой (по устаревшей короткопериодной форме — восьмой) группы, четвёртого периода периодической системы, с атомным номером 28. Обозначается символом Ni (лат. Niccolum ). Простое вещество никель — это пластичный, ковкий, переходный металл серебристо-белого цвета, при обычных температурах на воздухе покрывается тонкой плёнкой оксида. Химически малоактивен.

Содержание

Происхождение названия [ править | править код ]

Элемент получил своё название от имени духа гор (ср. нем. Nickel — озорник) немецкой мифологии, который «подбрасывал» искателям меди минерал красного цвета, похожий на медную руду (ныне известный как никелин).

История [ править | править код ]

Никель (англ., франц. и нем. Nickel) открыт в 1751 г. Однако задолго до этого саксонские горняки хорошо знали руду, которая внешне походила на медную и применялась в стекловарении для окраски стёкол в зелёный цвет. Все попытки получить из этой руды медь оказались неудачными, в связи с чем в конце XVII в. руда получила название купферникель (Kupfernickel), что переводится как «Медный упрямец» или «Медный озорник». Данную руду (красный никелевый колчедан NiAs) в 1751 г. исследовал шведский минералог А. Кронстедт. Ему удалось получить зелёный окисел и путём восстановления последнего — новый металл, названный никелем. Когда Бергман получил металл в более чистом виде, он установил, что по своим свойствам металл похож на железо; более подробно никель изучали многие химики, начиная с Пруста. Никкел — ругательное слово на языке горняков. Оно образовалось из искажённого Nicolaus — родового слова, имевшего несколько значений. Но главным образом слово Nicolaus служило для характеристики двуличных людей; кроме того, оно обозначало «озорной маленький дух», «обманчивый бездельник» и т. д. В русской литературе начала XIX в. употреблялись названия николан (Шерер, 1808 и Захаров, 1810), николь и никель (Двигубский, 1824).

Физические свойства [ править | править код ]

Никель — серебристо-белый металл, не тускнеет на воздухе. Имеет гранецентрированную кубическую решетку с периодом a = 0,35238 нм, пространственная группа Fm3m. В чистом виде весьма пластичен и поддается обработке давлением. Является ферромагнетиком с точкой Кюри 358 °C.

Химические свойства [ править | править код ]

3 N i + 8 H N O 3 ( 30 % ) → 3 N i ( N O 3 ) 2 + 2 N O + 4 H 2 O (30\%)
ightarrow 3Ni(NO_<3>)_<2>+2NO+4H_<2>O>>>

и в горячей концентрированной серной:

N i + 2 H 2 S O 4 → N i S O 4 + S O 2 + 2 H 2 O SO_<4>
ightarrow NiSO_<4>+SO_<2>+2H_<2>O>>>

С соляной и с разбавленной серной кислотами реакция протекает медленно. Концентрированная азотная кислота пассивирует никель, однако при нагревании реакция всё же протекает [6] (основной продукт восстановления азота — NO2).

С оксидом углерода CO никель легко образует летучий и очень ядовитый карбонил Ni(CO)4.

Тонкодисперсный порошок никеля пирофорный (самовоспламеняется на воздухе).

Никель горит только в виде порошка. Образует два оксида NiO и Ni2O3 и соответственно два гидроксида Ni(OH)2 и Ni(OH)3. Важнейшие растворимые соли никеля — ацетат, хлорид, нитрат и сульфат. Водные растворы солей окрашены обычно в зелёный цвет, а безводные соли — жёлтые или коричнево-жёлтые. К нерастворимым солям относятся оксалат и фосфат (зелёные), три сульфида: NiS (черный), Ni3S2 (желтовато-бронзовый) и Ni3S4 (серебристо-белый). Никель также образует многочисленные координационные и комплексные соединения. Например, диметилглиоксимат никеля Ni(C4H6N2O2)2, дающий чёткую красную окраску в кислой среде, широко используется в качественном анализе для обнаружения никеля.

Водные растворы солей никеля(II) содержат ион гексаакваникеля(II) [Ni(H2O)6] 2+ . При добавлении к раствору, содержащему эти ионы, аммиачного раствора происходит осаждение гидроксида никеля (II), зелёного желатинообразного вещества. Этот осадок растворяется при добавлении избыточного количества аммиака вследствие образования ионов гексааминникеля(II) [Ni(NH3)6] 2+ .

Читайте также:  Крашенный масляной краской потолок

Никель образует комплексы с тетраэдрической и с плоской квадратной структурой. Например, комплекс тетрахлороникелат (II) [NiCl4] 2− имеет тетраэдрическую структуру, а комплекс тетрацианоникелат(II) [Ni(CN)4] 2− имеет плоскую квадратную структуру.

В качественном и количественном анализе для обнаружения ионов никеля (II) используется щелочной раствор бутандиондиоксима, известного также под названиями диметилглиоксим и реактив Чугаева. То, что это вещество является реактивом на никель, установил в 1905 году Л. А. Чугаев [7] [8] . При его взаимодействии с ионами никеля (II) образуется красное координационное соединение бис(бутандиондиоксимато)никель(II). Это — хелатное соединение, и бутандиондиоксимато-лиганд является бидентатным.

Нахождение в природе [ править | править код ]

Никель довольно распространён в природе — его содержание в земной коре составляет ок. 0,01 %(масс.). В земной коре встречается только в связанном виде, в железных метеоритах содержится самородный никель (от 5 до 25 %). Содержание его в ультраосновных породах примерно в 200 раз выше, чем в кислых (1,2 кг/т и 8г/т). В ультраосновных породах преобладающее количество никеля связано с оливинами, содержащими 0,13—0,41 % Ni. Он изоморфно замещает железо и магний. Небольшая часть никеля присутствует в виде сульфидов. Никель проявляет сидерофильные и халькофильные свойства. При повышенном содержании в магме серы возникают сульфиды никеля вместе с медью, кобальтом, железом и платиноидами. В гидротермальном процессе совместно с кобальтом, мышьяком и серой и иногда с висмутом, ураном и серебром, никель образует повышенные концентрации в виде арсенидов и сульфидов никеля. Никель обычно содержится в сульфидных и мышьяк-содержащих медно-никелевых рудах.

  • никелин (красный никелевый колчедан, купферникель) NiAs
  • хлоантит (белый никелевый колчедан) (Ni, Co, Fe)As2
  • гарниерит (Mg, Ni)6(Si4O11)(OH)6·H2O и другие силикаты
  • магнитный колчедан (Fe, Ni, Cu)S
  • мышьяково-никелевый блеск (герсдорфит) NiAsS,
  • пентландит (Fe,Ni)9S8

В растениях в среднем 5⋅10 −5 весовых процентов никеля, в морских животных — 1,6⋅10 −4 , в наземных — 1⋅10 −6 , в человеческом организме — 1,2⋅10 −6 . О никеле в организмах известно уже немало. Установлено, например, что содержание его в крови человека меняется с возрастом, что у животных количество никеля в организме повышено, наконец, что существуют некоторые растения и микроорганизмы — «концентраторы» никеля, содержащие в тысячи и даже в сотни тысяч раз больше никеля, чем окружающая среда.

Месторождения никелевых руд [ править | править код ]

Основные месторождения никелевых руд находятся в Канаде, России (Мурманская область, Норильский район, Урал, Воронежская область [9] ), Кубе, ЮАР, Албании, Греции, а также на Новой Каледонии и Украине [10] .

Наибольшими запасами никеля в мире обладает Индонезия (21 млн тонн). Там добывается больше всего никеля в год (более 340 тыс. тонн) [11] .

Природные изотопы никеля [ править | править код ]

Природный никель содержит 5 стабильных изотопов: 58 Ni (68,27 %), 60 Ni (26,10 %), 61 Ni (1,13 %), 62 Ni (3,59 %), 64 Ni (0,91 %). Существуют также искусственно созданные изотопы никеля, самые стабильные из которых — 59 Ni (период полураспада 100 тысяч лет), 63 Ni (100 лет) и 56 Ni (6 суток).

Получение [ править | править код ]

Общие запасы никеля в рудах на начало 1998 года оцениваются в количестве 135 млн т., в том числе достоверные — 49 млн.т. Основные руды никеля — никелин (купферникель) NiAs, миллерит NiS, пентландит (FeNi)9S8 — содержат также мышьяк, железо и серу; в магматическом пирротине также встречаются включения пентландита. Другие руды, из которых тоже добывают Ni, содержат примеси Co, Cu, Fe и Mg. Иногда никель является основным продуктом процесса рафинирования, но чаще его получают как побочный продукт в технологиях других металлов. Из достоверных запасов, по разным данным, от 40 до 66 % никеля находится в «окисленных никелевых рудах» (ОНР), 33 % — в сульфидных, 0,7 % — в прочих. По состоянию на 1997 г. доля никеля, произведённого переработкой ОНР, составила порядка 40 % от общемирового объёма производства. В промышленных условиях ОНР делят на два типа: магнезиальные и железистые.

Тугоплавкие магнезиальные руды, как правило, подвергают электроплавке на ферроникель (5—50 % Ni+Co, в зависимости от состава сырья и технологических особенностей).

Наиболее железистые — латеритовые руды перерабатывают гидрометаллургическими методами с применением аммиачно-карбонатного выщелачивания или сернокислотного автоклавного выщелачивания. В зависимости от состава сырья и применяемых технологических схем конечными продуктами этих технологий являются: закись никеля (76-90 % Ni), синтер (89 % Ni), сульфидные концентраты различного состава, а также металлические никель электролитный, никелевые порошки и кобальт.

Менее железистые — нонтронитовые руды плавят на штейн. На предприятиях, работающих по полному циклу, дальнейшая схема переработки включает конвертирование, обжиг файнштейна, электроплавку закиси никеля с получением металлического никеля. Попутно извлекаемый кобальт выпускают в виде металла и/или солей. [12] Ещё один источник никеля: в золе углей Южного Уэльса в Англии — до 78 кг никеля на тонну. Повышенное содержание никеля в некоторых каменных углях, нефтях, сланцах говорит о возможности концентрации никеля ископаемым органическим веществом. Причины этого явления пока не выяснены.

Читайте также:  Минвата для утепления балкона

«Никель долгое время не могли получить в пластичном виде вследствие того, что он всегда имеет небольшую примесь серы в форме сульфида никеля, расположенного тонкими, хрупкими прослойками на границах металла. Добавление к расплавленному никелю небольшого количества магния переводит серу в форму соединения с магнием, которое выделяется в виде зерен, не нарушая пластичности металла.» [13]

Основную массу никеля получают из гарниерита и магнитного колчедана.

  1. Силикатную руду восстанавливают угольной пылью во вращающихся трубчатых печах до железо-никелевых окатышей (5—8 % Ni), которые затем очищают от серы, прокаливают и обрабатывают раствором аммиака. После подкисления раствора из него электролитически получают металл.
  2. Карбонильный способ (метод Монда). Вначале из сульфидной руды получают медно-никелевый штейн, над которым пропускают СО под высоким давлением. Образуется легколетучий тетракарбонилникель [Ni(CO)4], термическим разложением которого выделяют особо чистый металл.
  3. Алюминотермический способ восстановления никеля из оксидной руды: 3NiO + 2Al = 3Ni +Al2O3

Применение [ править | править код ]

В 2015 году 67 % потребления никеля пришлось на производство нержавеющей стали, 17 % на сплавы без железа, 7 % на никелирование и 9 % на прочие применения, такие как аккумуляторы, порошковая металлургия и химические реактивы [14] .

Сплавы [ править | править код ]

Никель является основой большинства суперсплавов — жаропрочных материалов, применяемых в аэрокосмической промышленности для деталей силовых установок.

  • монель-металл (65—67 % Ni + 30—32 % Cu + 1 % Mn), жаростойкий до 500 °C, очень коррозионно-устойчив;
  • белое золото (например, 585 пробы содержит 58,5 % золота и сплав (лигатуру) из серебра и никеля (или палладия));
  • нихром, сплав никеля и хрома (60 % Ni + 40 % Cr);
  • пермаллой (76 % Ni + 17 %Fe + 5 % Cu + 2 % Cr), обладает высокой магнитной восприимчивостью при очень малых потерях на гистерезис;
  • инвар (65 % Fe + 35 % Ni), почти не удлиняется при нагревании;
  • Кроме того, к сплавам никеля относятся никелевые и хромоникелевые стали, нейзильбер и различные сплавы сопротивления типа константана, никелина и манганина. [15]
  • Никель присутствует в качестве компонента ряда нержавеющих сталей.

Никелирование [ править | править код ]

Никелирование — создание никелевого покрытия на поверхности другого металла с целью предохранения его от коррозии. Проводится гальваническим способом с использованием электролитов, содержащих сульфат никеля(II), хлорид натрия, гидроксид бора, поверхностно-активные и глянцующие вещества, и растворимых никелевых анодов. Толщина получаемого никелевого слоя составляет 12—36 мкм. Устойчивость блеска поверхности может быть обеспечена последующим хромированием (толщина слоя хрома — 0,3 мкм).

Бестоковое никелирование проводится в растворе смеси хлорида никеля(II) и гипофосфита натрия в присутствии цитрата натрия:

N i C l 2 + N a H 2 P O 2 + H 2 O → N i + N a H 2 P O 3 + 2 H C l +NaH_<2>PO_<2>+H_<2>O
ightarrow Ni+NaH_<2>PO_<3>+2HCl>>>

Процесс проводят при рН 4—6 и 95 °C [15] .

Производство аккумуляторов [ править | править код ]

Производство железо-никелевых, никель-кадмиевых, никель-цинковых, никель-водородных аккумуляторов.

Химическая технология [ править | править код ]

Радиационные технологии [ править | править код ]

Нуклид 63 Ni, излучающий β – -частицы, имеет период полураспада 100,1 года и применяется в крайтронах, а также детекторах электронного захвата (ЭЗД) в газовой хроматографии.

Медицина [ править | править код ]

  • Применяется при изготовлении брекет-систем (никелид титана).
  • Протезирование.

Монетное дело [ править | править код ]

Никель широко применяется при производстве монет во многих странах [16] . В США монета достоинством в 5 центов носит разговорное название «никель» [17] .

Музыкальная промышленность [ править | править код ]

Также никель используется для производства обмотки струн музыкальных инструментов.

Цены на никель [ править | править код ]

В течение 2012 года цены на никель колебались в пределах от $15 500 до $17 600 за тонну.

Биологическая роль [ править | править код ]

Никель относится к числу микроэлементов, необходимых для нормального развития живых организмов. Однако о его роли в живых организмах известно немного. Известно, что никель принимает участие в ферментативных реакциях у животных и растений. В организме животных он накапливается в ороговевших тканях, особенно в перьях. Повышенное содержание никеля в почвах приводят к эндемическим заболеваниям — у растений появляются уродливые формы, у животных — заболевания глаз, связанные с накоплением никеля в роговице. Токсическая доза (для крыс) — 50 мг. Особенно вредны летучие соединения никеля, в частности, его тетракарбонил Ni(CO)4. ПДК соединений никеля в воздухе составляет от 0,0002 до 0,001 мг/м 3 (для различных соединений).

Физиологическое действие [ править | править код ]

Никель и его соединения токсичны и канцерогенны.

Никель — основная причина аллергии (контактного дерматита) на металлы, контактирующие с кожей (украшения, часы, джинсовые заклепки). В 2008 году Американским обществом контактного дерматита никель был признан «Аллергеном года» [18] . В Европейском союзе ограничено содержание никеля в продукции, контактирующей с кожей человека [19] .

В XX веке было установлено, что поджелудочная железа очень богата никелем. При введении вслед за инсулином никеля продлевается действие инсулина и тем самым повышается гипогликемическая активность. Никель оказывает влияние на ферментативные процессы, окисление аскорбиновой кислоты, ускоряет переход сульфгидрильных групп в дисульфидные. Никель может угнетать действие адреналина и снижать артериальное давление. Избыточное поступление никеля в организм вызывает витилиго. Депонируется никель в поджелудочной и околощитовидной железах.

“>

Оцените статью
Добавить комментарий

Adblock detector