Метод непосредственного применения законов кирхгофа решение задач

Метод непосредственного применения законов кирхгофа решение задач

Рассмотрим на примерах как можно использовать законы Кирхгофа при решении задач.

Задача 1

Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.

Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи

Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.

На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.

Уравнения для первого и второго контуров по второму закону будут:

Все эти три уравнения образуют систему

Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым).

Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.

Задача 2

Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.

Как и в предыдущей задаче начнем решение с составления уравнений на основании первого закона Кирхгофа. Количество уравнений n-1= 2

Затем составляем уравнения по второму закону для трех контуров. Учитываем направления обхода, как и в предыдущей задаче.

На основании этих уравнений составляем систему с 5-ью неизвестными

Решив эту систему любым удобным способом, найдем неизвестные величины

Для этой задачи выполним проверку с помощью баланса мощностей, при этом сумма мощностей, отданная источниками, должна равняться сумме мощностей полученных приемниками.

Баланс мощностей сошелся, а значит токи и ЭДС найдены верно.

На рис. 4.1 изображена схема разветвленной электрической цепи. Известны величины сопротивлений и ЭДС, необходимо определить токи.

В схеме имеются четыре узла, можно составить четыре уравнения по первому закону Кирхгофа.

Укажем произвольно направления токов. Запишем уравнения:

(4.1)

Сложим эти уравнения. Получим тождество 0 = 0. Система уравнений (4.1) является зависимой.

Если в схеме имеется n узлов, количество независимых уравнений, которые можно составить по первому закону Кирхгофа, равно n — 1.

Для схемы на рис. 4.1 число независимых уравнений равно трем.

(4.2)

Недостающее количество уравнений составляют по второму закону Кирхгофа. Уравнения по второму закону составляют для независимых контуров. Независимым является контур, в который входит хотя бы одна новая ветвь, не вошедшая в другие контуры.

Выберем три независимых контура и укажем направления обхода контуров. Запишем три уравнения по второму закону Кирхгофа.

(4.3)

Решив совместно системы уравнений (4.2) и (4.3), определим токи в схеме.

Ток в ветви может иметь отрицательное значение. Это означает, что действительное направление тока противоположно выбранному нами.

Метод контурных токов

Метод непосредственного применения законов Кирхгофа громоздок. Имеется возможность уменьшить количество совместно решаемых уравнений системы. Число уравнений, составленных по методу контурных токов, равно количеству уравнений, составляемых по второму закону Кирхгофа.

Метод контурных токов заключается в том, что вместо токов в ветвях определяются, на основании второго закона Кирхгофа, так называемые контурные токи, замыкающиеся в контурах.

На рис. 4.2 в качестве примера изображена двухконтурная схема, в которой I11 и I22 — контурные токи.


Рис. 4.2

Токи в сопротивлениях R1 и R2 равны соответствующим контурным токам. Ток в сопротивлении R3, являющийся общим для обоих контуров, равен разности контурных токов I11 и I22, так как эти токи направлены в ветви с R3 встречно.

Порядок расчета

Выбираются независимые контуры, и задаются произвольные направления контурных токов.

В нашем случае эти токи направлены по часовой стрелке. Направление обхода контура совпадает с направлением контурных токов. Уравнения для этих контуров имеют следующий вид:

Перегруппируем слагаемые в уравнениях

(4.4)

(4.5)

Суммарное сопротивление данного контура называется собственным сопротивлением контура.

Собственные сопротивления контуров схемы

, .

Сопротивление R3, принадлежащее одновременно двум контурам, называется общим сопротивлением этих контуров.

,

где R12 — общее сопротивление между первым и вторым контурами;

R21 — общее сопротивление между вторым и первым контурами.

В общем виде уравнения (4.4) и (4.5) записываются следующим образом:

,

.

Собственные сопротивления всегда имеют знак "плюс".

Общее сопротивление имеет знак "минус", если в данном сопротивлении контурные токи направлены встречно друг другу, и знак "плюс", если контурные токи в общем сопротивлении совпадают по направлению.

Решая уравнения (4.4) и (4.5) совместно, определим контурные токи I11 и I22, затем от контурных токов переходим к токам в ветвях.

Ветви схемы, по которым протекает один контурный ток, называются внешними, а ветви, по которым протекают несколько контурных токов, называются общими. Ток во внешней ветви совпадает по величине и по направлению c контурным. Ток в общей ветви равен алгебраической сумме контурных токов, протекающих в этой ветви.

В схеме на рис. 4.2

.

Рекомендации

1. Контуры выбирают произвольно, но целесообразно выбрать контуры таким образом, чтобы их внутренняя область не пересекалась ни с одной ветвью, принадлежащей другим контурам.

2. Контурные токи желательно направлять одинаково (по часовой стрелке или против).

3. Если нужно определить ток в одной ветви сложной схемы, необходимо сделать его контурным.

4. Если в схеме имеется ветвь с известным контурным током, этот ток следует сделать контурным, благодаря чему количество уравнений становится на единицу меньше.

Метод узловых потенциалов

Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы φ4 = 0.

Запишем уравнение по первому закону Кирхгофа для узла 1.

(4.6)

В соответствии с законами Ома для активной и пассивной ветви

,

где — проводимость первой ветви.

,

где — проводимость второй ветви.

Подставим выражения токов в уравнение (4.6).

(4.7)

где g11 = g1 + g2 — собственная проводимость узла 1.

Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле.

g12 = g2 — общая проводимость между узлами 1 и 2.

Общей проводимостью называют проводимость ветви, соединяющей узлы 1 и 2.

— сумма токов источников, находящихся в ветвях, сходящихся в узле 1.

Если ток источника направлен к узлу, величина его записывается в правую часть уравнения со знаком "плюс", если от узла — со знаком "минус".

По аналогии запишем для узла 2:

(4.8)

(4.9)

Решив совместно уравнения (4.7), (4.8), (4.9), определим неизвестные потенциалы φ1, φ2, φ3, а затем по закону Ома для активной или пассивной ветви найдем токи.

Если число узлов схемы — n, количество уравнений по методу узловых потенциалов — (n — 1).

Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.

Метод двух узлов

Схема на рис. 4.4 имеет два узла. Потенциал точки 2 примем равным нулю φ2 = 0. Составим узловое уравнение для узла 1.

,

,

где , , — проводимости ветвей.

.

В знаменателе формулы — сумма проводимостей параллельно включенных ветвей. В числителе — алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.

После вычисления величины потенциала φ1 находим токи в ветвях, используя закон Ома для активной и пассивной ветви.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Пример . Методом непосредственного применения законов Кирхгофа рассчитать токи в схеме на рис.

Число ветвей обозначим m, а число узлов n. Произвольно выбираем положительные направления токов в ветвях и направления обхода контуров. Поскольку в каждой ветви протекает свой ток, то число токов, которое следует определить, а следовательно, и число уравнений, которое нужно составить, равно m. По первому закону Кирхгофа составляем n-1 уравнений. Недостающие m-(n-1) уравнений следует составить по второму закону Кирхгофа для взаимно независимых контуров.

Рис. 2.20. Схема замещения сложной электрической цепи с несколькими источниками энергии: I, II, III – номера контуров

1. Проводим топологический анализ.

Она содержит пять ветвей и три узла, m = 5, n = 3. Составляем два уравнения по первому закону Кирхгофу, т. к. n – 1 = 2 (например, для узлов а и б).

2. Составляем уравнения по певому и второму законам Кирхгофа

Остальные m — (n — 1) = 3 уравнения составляем по второму закону Кирхгофа.

Решив систему, состоящую из пяти уравнений, находим пять неизвестных токов. Если какие-либо значения токов оказались отрицательными, то это означает, что действительные направления этих токов противоположны первоначально выбранным.

При расчётах сложных цепей с использованием ЭВМ удобна матричная форма записи. Уравнения, составленные по законам Кирхгофа, запишем в виде

В матричной форме

где [R] – квадратная (5 х 5) матрица, элементами которой являются коэффициенты при неизвестных токах в исходных уравнениях;

[I] – матрица — столбец неизвестных токов;

[E] – матрица — столбец, элементами которой могут быть алгебраическая сумма ЭДС.

Решение матричного уравнения ищут в виде

где [R] -1 – матрица, обратная матрице [R].

Рассмотренный метод расчета неудобен, если в цепи имеется большое количество узлов и контуров, поскольку потребуется решать громоздкую систему уравнений. В таких случаях рекомендуется применять метод контурных токов, позволяющий значительно сократить число расчетных уравнений 2.

Метод контурных токов

Метод основан на 2-м законе Кирхгофа. При его использовании в составе анализируемой схемы выбирают независимые контуры и предполагают, что в каждом из контуров течет свой контурный ток. Для каждого из независимых контуров составляют уравнение по 2-му закону Кирхгофа и их решают. Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих по данной ветви.

Все источники сигналов, представленные источниками тока, заменяют источниками ЭДС (рис. 4.29).

Эта схема эквивалентна, если

а)E = IZi I ;

1) Топологический анализ схемы.

а) Как и в предыдущем методе, определяют число ветвей b.

б) Определяют число узлов у.

Все независимые контуры обозначены дугами со стрелками на них, которые показывают положительное направление обхода.

За положительное направление контурного тока принимают положительное направление обхода контура.

2) По второму закону Кирхгофа относительно контурных токов записывают уравнения, которые после приведения подобных членов образуют систему линейных уравнений Nk = Nkпорядка:

Zii– собственное сопротивлениеi-го контура и равно алгебраической сумме сопротивлений, входящих вi-й контур;

Zji– сопротивление смежных ветвей междуi-м иj-м контурами. Оно представляет собой алгебраическую сумму, причем ее члены берутся со знаком «+», если контурные токи направлены одинаково, и со знаком «–», если они направлены встречно;

Eki– контурная ЭДСi-ого контура. Она равна алгебраической сумме ЭДС, входящих вi-й контур. Контурная ЭДСEkiберется со знаком «+», когда направление источника ЭДС и направление тока совпадают, и со знаком «–», если они направлены встречно.

3) По правилу Крамера находят контурные токиIki=.

4) Токи в ветвях находят как алгебраическую сумму контурных токов, протекающих через данную ветвь. В алгебраической сумме контурные токи берутся со знаком «+» , если ток ветви и совпадает с контурным током и «–» если не совпадает.

Если токи ветви оказались положительными, то выбранное направление тока совпадает с истинным и наоборот.

Пример.Дана комплексная схема замещения электрической цепи (рис. 4.30). Определить токи во всех ветвях.

1. Проводим топологический анализ

2) Составим систему уравнений по методу МКТ

где:

E11= E1; E22 = 0;E33 = 0.

3) По методу Крамера находим контурные токи Iki = .

4) Находим токи в ветвях: I1 = Ik1; I2 = = Ik1Ik2; I3 = Ik1Ik3; I4 = –Ik2 + Ik3; I5 = Ik2; I6 = Ik3.

Пример 2. Рассмотрим электрической цепи постоянного тока, рис. 2.21.

1. Проводим топологический анализ

2) Для каждого контура записывают уравнение второго закона Кирхгофа,

Рис. 2.21. – Расчетная схема для метода контурных токов

В каждом из трех контуров протекает свой контурный ток J1, J2, J3. Произвольно выбираем направление этих токов, например, по часовой стрелке. Составляем уравнения по второму закону Кирхгофа для каждого контура с учетом соседних контурных токов, протекающих по смежным ветвям

Решив систему уравнений, находят контурные токи J1, J2, J3. Затем определяют реальные токи в ветвях, причем токи во внешних ветвях равны контурным, а в смежных – алгебраической сумме 2-х контурных токов, протекающих в данной ветви

Исходная система уравнений в матричной форме

где [R] – квадратная матрица коэффициентов контурных токов;

[J] – матрица – столбец контурных токов; [E] – матрица – столбец ЭДС.

Решением матричного уравнения является матрица

где [R] -1 – матрица, обратная матрице [R]

Пример 3. Для электрической цепи, схема которой приведена на рис. 1.1, получим следующие уравнения:

получим следующие уравнения:

По методу Крамера найдем контурные токи:

Действительные токи в ветвях: I1 = Ik1; I2 = Ik2 – Ik1; I3 = Ik2.

Пример 4. Расчет цепи методом контурных токов на рис. 2.22.

Рис. 2.22. – Расчет цепи методом контурных токов

Для схемы замещения электрической цепи, показанной на рис. 2.22, задано: E1 = 30 B; E2 = 10 В; R1 = 8 Ом; R2 = 15 Ом; R3 = 36 Ом. Требуется определить токи в ветвях методом контурных токов. Составить баланс мощности.

Схема содержит три ветви (m = 3), два узла (n = 2). Выбираем положительные направления токов в ветвях произвольно. Число уравнений, составленных по методу контурных токов, равно m — (n — 1) = 2. Задаем направление контурных токов (например, по часовой стрелке) и составляем систему уравнений

Подставляя численные значения сопротивлений резисторов и ЭДС в приведённые уравнения, находим контурные токи J1, J2 (Например, методом определителей)

Составляем баланс мощностей.

Мощность генераторов (источников)

где произведение Е2·I2 имеет знак минус (ток через источник не совпадает с ЭДС, значит источник ЭДС работает в режиме потребителя электрической энергии).

Мощность, потребляемая нагрузкой, составляет

составляет менее 1%, т. е. токи найдены верно.

Метод узловых потенциалов (МУП)

Метод основан на применении первого закона Кирхгофа. В нем за неизвестные величины принимают потенциалы узлов. По закону Ома определяют токи во всех ветвях схемы.

Все источники ЭДС, имеющиеся в схеме, заменяют источниками тока (рис. 4.31).

1) Топологический анализ.

а) Подсчитывают число ветвей bи число узловy.Определяется количество независимых узловNy =y – 1.

б) Нумеруют все узлы. Один из узлов, к которому сходится наибольшее число ветвей, считают нулевым, где – потенциал нулевого узла.

2) По 1-му закону Кирхгофа составляют уравнения для Nузлов схемы и решают их относительно потенциалов узлов:

,

где Yii– собственная узловая проводимость. Она равна сумме проводимостей всех ветвей, сходящихся вi-м узле, все они берутся со знаком «+»;

Yij– межузловая проводимость междуi-м иj-м узлами. Проводимости всех узлов берутся со знаком «–»;

Iii– алгебраическая сумма токов источников тока, сходящихся вi-м узле. Втекающие токи записываются в эту сумму со знаком «+», а вытекающие – со знаком «–».

3) Потенциалы узлов находят по формуле Крамера

.

4) Токи в ветвях находят по закону Ома

Пример.Дана электрическая цепь (рис. 4.32). Рассчитать токи во всех ветвях.

редварительно преобразуем все источники напряжения (рис. 4.32) в источники тока (рис. 4.33).

Читайте также:  Крутящиеся кресла для дома
Оценить статью
Добавить комментарий