Кр572пв2 datasheet на русском

Кр572пв2 datasheet на русском

Применение АЦП КР572ПВ2

Микросхема КР572ПВ2. Представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала. Микросхема представляет собой электронную часть цифрового вольтметра, измеряющего входной сигнал до ±1,999 В и ± 199,9 мВ. Цифровая информация отображается на светодиодном индикаторе АЛС324Б. Микросхема представляет собой функционально-законченное устройство. Для работы преобразователя совместно с ИС используются только внешние конденсаторы, резисторы и источники питания. Схема включения показана на рисунке.

Назначение выводов ИС КР572ПВ2: 1—напряжение питания Uип1; 2—цифровой выход d1; 3—цифровой выход C1;4—цифровой выход b1; 5—цифровой выход a1; б—цифровой выход f1; 7—цифровой выход g1; 8— цифровой выход C1; 9—цифровой выход d10; 10—цифровой выход C10 11—цифровой выход b10; 12—цифровой выход а10; 13—цифровой выход f10 14—цифровой выход е10; 15—цифровой выход d100; 16—цифровой выход b100 17-—цифровой выход f100; 18—цифровой выход e100; 19—цифровой выход bc1000 20—цифровой выход g1000; 21—общий; 22—цифровой выход g100 23—цифровой выход а100; 24—цифровой выход С100; 25—цифровой выход g10 26—напряжение питания Uи.п; 27—конденсатор интегратора; 28—резистор интегратора; 29—конденсатор автокоррекции; 30—аналоговый входUвх (—) 31—аналоговый вход Uвх (+); 32—общий аналоговый выход; 33—опорный конденсатор; 34—опорный конденсатор; 35—опорное напряжение (—); 36— опорное напряжение (+); 37—контрольный вход; 38—конденсатор генератора ТИ; 39—резистор генератора ТИ; 40—генератор ТИ.

Основой принципиальной схемы нашего термометра будет микросхема 572ПВ2 (ICL7107), которая представляет собой АЦП двойного интегрирова­ния с выходом в параллельном семисегментном коде с расчетом на 3,5 деся­тичных разряда. Что означает цифра 3,5 — не может же использоваться пол­разряда? Действительно, при использовании полного выходного диапазона этой микросхемы, который составляет число ±1999, нужно подключать 4 ин­дикатора, однако последний (старший) из них будет использоваться только для индикации цифры 1, и, при необходимости, знака минус. Число 3,5 и оз­начает, что старший разряд используется не полностью (бывают и более за­ковыристые обозначения, вроде ЗУл разряда, но их оставим на совести авто­ров). Заметим, что разрешающая способность (а при соблюдении некоторых требований — и точность) этого АЦП эквивалентна приблизительно 11 дво­ичным разрядам, то есть приведенная погрешность составит 0,05%, что очень и очень неплохо.

Читайте также:  Красная кухня черная столешница белый фартук

Основная (типовая) схема включения микросхемы 572ПВ2 показана на рис. 17.8. Микросхема имеет два собственных питания — положительное 5 В (от 4,5 до 6 В) и отрицательное, которое может варьироваться в довольно большом диапазоне от -9 до -3,5 В. Это обстоятельство позволяет при необ­ходимости использовать для отрицательного питания не слишком стабиль­ные преобразователи-инверторы, о чем далее.

Семисегментные LED-индикаторы можно подключать напрямую, без каких-либо дополнительных резисторов (ток через сегмент при этом равен 5— 8 мА). Управление индикаторами осуществляется коммутацией на «землю», поэтому нужен индикатор с общим анодом, который целесообразно подклю­чать к отдельному источнику питания, чтобы не вносить лишние помехи. Однако выходы управления индикатором не являются выходами с открытым коллектором (точнее — истоком), а есть обычный комплементарный КМОП-выход (см. рис. 15.1, схему инвертора справа). Вытекающий ток в состоянии логической единицы может составить примерно 0,5 мА, а в состоянии логи­ческого нуля — примерно 5—8 мА (для вывода 19, который управляет одно­временно двумя сегментами при засветке 1 в старшем разряде, этот ток со­ставляет 10—16 мА).

Рис. 17.8. Типовое включение микросхемы 572ПВ2 (ICL7107) в корпусе DIP-40

Заметки на полях

Это обстоятельство можно использовать для управления индикаторами через внешние ключи. Дело в том, что для питания LED, потребляющих достаточно большой ток (при максимальном количестве зажженных сегментов, то есть при индикации -1888, он может составить от 120 до 200 мА), естественно было бы использовать нестабилизированное повышенное напряжение, например, от входа стабилизатора положительного напряжения. Это особенно актуально при подключении крупных индикаторов с повышенным падением напряжения, при напряжении 5 В они будут светиться очень тускло (если загорятся вооб­ще). Однако ставить более 20 штук ключей не очень хочется, если конструкция не слишком капитальная. К сожалению, в технической документации ни один из производителей не упоминает о возможности подключения LED-индикатора к повышенному напряжению. Можно ожидать, что при пиковом значении на­пряжения питания, не превышающем суммы основного питания (5 В) и паде­ния напряжения на индикаторе (1,8—2 В для обычных и 3,5—4 В для крупных индикаторов), микросхеме ничего не грозит. В крайнем случае, можно поста­вить небольшие резисторы, ограничивающие ток через защитные диоды. Ав­тор этих строк на свой страх и риск провел долгосрочный эксперимент по пи­танию LED-индикатора высотой 1 дюйм от пульсирующего напряжения 6,5— 7 В с амплитудным значением, соответственно, около 9—10 В (от отдельной обмотки трансформатора через один диод в качестве выпрямителя). Опыт по­казал, что такой режим микросхема вполне выдерживает. При этом из-за «од-нополупериодности» напряжения средний ток через сегменты примерно в пол­тора раза ниже номинального, чего вполне достаточно для нормальной яркости горения. Здесь мы также применим этот режим питания, однако в не­которых случаях это неудобно, и приходится ставить отдельный мощный ста­билизатор, как и положено.

Выпускается совершенно идентичная по функциональности и разводке выво­дов микросхема 572ПВ5 (ICL7106), которая отличается только тем, что она предназначена для управления ЖК-индикаторами, а не светодиодными, так что, если есть нужда в малом потреблении, можно почти без изменений ос­новной схемы использовать такой вариант. Просто заменить LED-индикатор на ЖК и наоборот, как мы уже говорили, нельзя, потому что для управления ЖК-индикаторами требуется переменное напряжение, иначе отключенные сегменты «зависнут» в поглощающем свет состоянии. Поэтому при замене ПВ2 на ПВ5 отличие в схеме заключается в том, что вывод 21 представляет собой не «цифровую землю» (ОЫВц), а подсоединяется к общему выводу ЖК-индикатора. При этом отдельное питание, естественно, не требуется. Управление ЖК-сегментами происходит так— на общем выводе 21 все вре­мя присутствует меандр, а на тот сегмент, который нужно засветить, подает­ся точно такой же меандр, но в противофазе. При отключении сегмента фаза на выводе его управления меняется на противоположную и становится такой же, как на выводе 21, поэтому постоянное напряжение на сегмент никогда не подается.

Отдельный вопрос представляет засветка запятой, если ее по ходу дела надо гасить. В LED-варианте это несложно (можно просто засветить постоянно, или через какой-то ключ), а для ЖК-варианта нужно для нее также обеспе­чить подобный режим управления. Иначе при подаче постоянного напряже­ния она просто засветится навсегда (и будет светиться еще долго после вы­ключения питания) и к тому же будет резко выделяться большим контрастом. Разработчики рекомендуют использовать для этой цели отдельный логиче­ский инвертор, подключенный к выходу 21. При этом (как и в случае под­ключения внешнего тактового генератора, см. далее) в качестве «цифровой земли» в 572ПВ5 следует использовать вывод 37 (TEST).

Ввиду отсутствия у микросхемы ПВ5 «цифровой земли» как таковой, эту микросхему можно питать от одного источника, напряжение которого мо­жет составлять от 9 до 15 В (что эквивалентно диапазону от ±4,5 до ±7,5 В). Только при этом не следует забывать, что для обеих микросхем опорное и входное напряжения не должны выходить за пределы, на 1 В отступающие от потенциалов +С/пит и -t/пит. Для микросхемы ПВ2, вообще говоря, требу­ется двуполярное питание во всех случаях, так как «цифровая земля» ОЫОц должна иметь общую точку с аналоговой частью для внутреннего согласо­вания уровней управляющих сигналов. Однако можно обойтись одним пи­танием +5 В (подсоединив вход -(/„„т к «земле»), если, в соответствии с вышесказанным, опорное и измеряемое напряжения по абсолютной вели­чине не превышают 1,5 В, причем эта величина должна отсчитываться от середины (/„ит.

Есть и более современные варианты этих преобразователей — например, с очень малым потреблением, но параметры разобранных микросхем и так достаточно хороши — при тактовой частоте 50 кГц время преобразования составляет 0,32 с (16000 периодов тактовой частоты), а потребление при этом не превышает 0,6 мА (не считая, конечно, потребления индикаторов в LED-варианте).

Удобство микросхем ПВ2 и ПВ5 заключается и в том, что они оперируют с двуполярными входными напряжениями, автоматически определяя и высве­чивая знак. Диапазон входного измеряемого напряжения определяется опор­ным, с помощью которого и задается масштаб, при этом опорное должно на­ходиться в пределах 0,1—1 В, а измеряемое может по абсолютной величине превышать его, в соответствии с разрешающей способностью, ровно в два раза. Если, например, опорное напряжение равно 1 В, то измеряемое может быть в пределах ±2 В (точнее ±1,999 В), а в общем случае выходной код оп­ределяется выражением N= 1000-^ При превышении значением входного

напряжения предела +2L/on младшие три разряда гаснут, а при снижении ни­же -lUon — гаснет все, кроме знака минус.

На схеме рис. 17.8 показан именно такой вариант включения с общими «зем­лями». Однако оба входных напряжения — опорное и измеряемое — могут быть и «плавающими», без общей «земли», единственное требование — что­бы их значения не выходили за пределы питания (а по абсолютной величине они, естественно, должны соответствовать указанным ранее требованиям). В этом случае вывод 32 («аналоговая земля») не используется. На этом выво­де тогда присутствует напряжение, равное (С/+пит

2,8) В. Если очень надо, его можно использовать в качестве опорного (не само напряжение относи­тельно «земли», которая в данном случае есть довольно условное понятие, а именно разность между положительным питанием и выводом 32). Однако стабильность этого напряжения невелика, и так рекомендуется поступать только в уж очень экономичных схемах. Особенно это плохо в случае ПВ2, в которой выходные каскады за счет большого тока сильно (и неравномерно по времени из-за разного количества подключенных сегментов) нагревают кри­сталл, и напряжение это начинает «плавать». Ошибка при этом может соста­вить до 0,5%, то есть точность снижается до 9 разрядов вместо 11.

Тактовую частоту микросхем следует выбирать из ряда 200, 100, 50 и 40 кГц, при этом частота помехи 50 Гц будет укладываться в длительность фазы ин­тегрирования входного напряжения (см. далее) целое число раз, и такая по­меха будет интегрироваться полностью. Тактовую частоту можно задавать тремя способами — с помощью RC-цепочки, как показано на рис. 17.8, с по­мощью кварца, подключаемого к выводам 39 и 40, а также внешним генера­тором, выход которого подключается в выводу 40 (в ПВ2 при этом в качестве общего провода используется вывод 21 «цифровая земля», а в ПВ5— вы­вод 37 «TEST»). На практике чаще всего используется первый способ, при этом частота будет равна примерно 0,45ЛгСг. В фирменной документации на этот счет есть некоторая неясность, так как рекомендуется выбирать Лг = 100 кОм при Сг = 100 пф, и тогда согласно формуле частота должна со­ставить 45 кГц. Это далеко и от 40, и от 50 кГц, рекомендуемых для частоты помехи 50 Гц, и не вполне совпадает с 48 кГц, рекомендуемыми для помехи 60 Гц. Все отечественные описания микросхем ПВ2 и ПВ5 изящно обходят этот вопрос, просто повторяя фирменные рекомендации. Думается, что со­ставители документации имели в виду все же 60-герцовую помеху (то есть тактовую частоту 48 кГц), поэтому в отечественных пенатах следует снизить емкость Сг до 91 пф — так будет корректнее. Вообще, ошибка в ±5%, конеч­но, тут вполне допустима.

Из особенностей внутреннего функционирования этих микросхем нам инте­ресен еще один момент. Цикл работы ПВ2 и ПВ5 состоит из трех фаз, первые две из которых идентичны циклу работы ПНВ по рис. 17.5. После окончания фазы интегрирования опорного напряжения и формирования собственно из­мерительного интервала, начинается последняя (или первая для следующего измерения) часть цикла, носящая название фазы автокоррекции. В этой фазе происходит не только сброс интегрирующей емкости (который у нас в схеме по рис. 17.6 занимал некоторое время из отведенного для фазы интегрирова­ния), но и, кроме этого, на конденсаторе Сак происходит накопление напря­жения смещения всех участвующих в процессе ОУ и компараторов. В рабо­чих циклах это напряжение учитывается. Но для нас еще интереснее, что в этой фазе одновременно происходит заряд емкости Соп до значения опорного напряжения, и последующее интегрирование в рабочем цикле оперирует именно с этой величиной, а вход опорного напряжения при этом отключает­ся. Собственно, сделано это для того, чтобы была возможность автоматиче­ского внутреннего инвертирования опорного напряжения при смене знака измеряемого. Однако для нас это важно, потому что позволяет сгладить на­личие высокочастотных помех на входе опорного напряжения. К сожалению, длительность фазы автокоррекции является неопределенной (так как она за­нимает всю оставшуюся часть фазы интегрирования опорного напряжения, к которому прибавляется фиксированный интервал времени в 4000 периодов тактовой частоты), и низкочастотная помеха при этом интегрируется плохо.

Номиналы емкостей и резисторов на рис. 17.8 приведены для случая опорно­го напряжения, равного 1 В, и тактовой частоты 50 кГц. При опорном напря­жении 0,1 В емкость Сак нужно увеличит^ до 0,47 мкФ, С„„т уменьшить до 0,1 мкФ, а Линт уменьшить до 47 кОм. В остальных случаях эти номиналы должны быть изменены в указанных пределах примерно пропорционально изменению опорного напряжения.

К выбору типов компонентов следует подходить весьма тщательно, от этого сильно зависит в первую очередь линейность преобразования. Резисторы все могут быть типа МЛТ, хотя при наличии стоит предпочесть С2-29В. Конден­сатор тактового генератора С ген может быть керамическим (типа КМ73-10, КМ-5, КМ-6). Остальные конденсаторы (С„„т, Соп, и Сак) должны иметь орга­нический диэлектрик, лучше всего подойдут фторопластовые (К72П-6, К72-9) или полистироловые (К71-4, К71-5), но сойдут и полиэтилентерефталатные (К73-16, К73-17). Эти конденсаторы могут ужаснуть вас своими размерами, но ничего не поделаешь — такова плата за стабильность. Высокие конденса­торы (как К73-17) следует устанавливать лежа— хотя при этом площадь платы увеличивается, но зато конденсаторы не торчат над всеми остальными компонентами. Это, кроме всего прочего, повышает надежность монтажа, ибо меньше вероятность выкорчевать конденсатор с корнем, случайно поло­жив поверх платы каталог продукции фирмы MAXIM.

На просторах интернета была найдена статья, в которой я нашел фото готового устройства с Т-образной печатной платой вольтметра. Идея мне сразу понравилась тем, что отсутствует жгут проводов между основной платой и платой с индикацией.

Затем, не смотря на всю более менее компактность, я решил использовать по делу свободное место под микросхемой и развёл туда почти все элементы схемы.

Получилось очень даже компактно. Это получился мой первый вариант.

Повертевши плату в руках, прикинув место расположения в корпусе, я понял, что при установке двух таких плат, амперметра и вольтметра, внутреннее пространство для монтажа уменьшится не в мою пользу. Корпус большего размера мне не захотелось приобретать, тогда пришла мысль второго варианта сборки платы устройства – «сэндвич».

При сборке второго варианта платы в ход пошли ножки резисторов и конденсаторов, а также шестигранные стойки из плотного капрона с внутренней сквозной резьбой М3, втулки из детского набора для плетения всяких фенечек (2000шт. в упаковке, по цене 3$) и небольшой листик плёнки самоклейки матово-белого цвета (фирмы Oracal). На фото показана очерёдность сборки конструкции. В зависимости от количества диодов в схеме 2-3шт. можно скорректировать яркость свечения индикаторов. Я установил 3шт. в вольтметре и 2шт в амперметре (просто мне красный резал по глазам), вместо третьего установил перемычку.

Кто будет изготавливать платы без ЛУТ технологии как я, может столкнутся с проблемой рисования лаком прямоугольных площадок (под пайку перемычек или спайку Т-платы) с одинаковыми зазорами. Я делал так, печатал рисунок, затем приклеивал его к текстолиту с стороны меди и при помощи металлической линейки канцелярским ножом делал прорези. Между прорезями, после снятия бумаги и зачистки, лак очень хорошо заливается, не вытекая за границы.

«>

Оценить статью
Добавить комментарий