Из таблицы 2-1 видно, что массы субатомных частиц чрезвычайно малы. Показатель степени (например, десять в минус двадцать седьмой степени) показывает, сколько нулей после запятой нужно записать, чтобы получилась десятичная дробь, выражающая массу субатомной частицы в килограммах. Это ничтожнейшая часть килограмма, поэтому массу субатомных частиц удобнее выражать в атомных единицах массы (сокращенно – а.е.м.). За атомную единицу массы принята ровно 1/12 часть массы атома углерода, в ядре которого содержится 6 протонов и 6 нейтронов. Схематическое изображение такого "эталонного" атома углерода приведено на рис. 2-5 (б). Атомную единицу массы можно выразить и в граммах: 1 а.е.м. = 1,660540·10 -24 г.
Рис. 2-5. Атомы состоят из положительно заряженного ядра и электронного облака. а) В состав ядра атома водорода входит только 1 протон, а электронное облако заполняется одним электроном. б) В ядре атома углерода 6 протонов и 6 нейтронов, а в электронном облаке – 6 электронов. в) Существует также изотопный углерод, ядре которого на 1 нейтрон больше. Содержание этого изотопа в природном углероде составляет чуть более 1% (об изотопах см. ниже). Линейные размеры атомов очень малы: их радиусы составляют от 0,3 до 2,6 ангстрема (1 ангстрем = 10 –8 см). Радиус ядра около 10 –5 ангстрема, то есть 10 –13 см. Это в 100000 раз меньше размеров электронной оболочки. Поэтому правильно показать относительные пропорции ядер и электронных оболочек на рисунке невозможно. Если бы атом увеличился до размеров Земли, то ядро имело бы всего около 60 м в диаметре и могло бы поместиться на футбольном поле.
Масса атома, выраженная в килограммах или граммах, называется абсолютной атомной массой . Чаще пользуются относительной атомной массой, которая выражается в атомных единицах массы (а.е.м.). Относительная атомная масса представляет собой отношение массы какого-нибудь атома к массе 1/12 части атома углерода. Иногда говорят более коротко: атомный вес . Последний термин вовсе не устаревший, как иногда пишут в учебниках – он широко используются в современной научной литературе, поэтому мы тоже будем его применять. Относительная атомная масса и атомный вес, фактически, безразмерные величины (масса какого-либо атома делится на массу части атома углерода), поэтому обозначение "а.е.м." после численного значения обычно опускают (но можно и написать, в этом не будет ошибки). Термины “ относительная атомная масса”, “атомная масса” , “ атомный вес” в научном химическом языке обычно используются равноправно и между ними просто не делают различий. В Международном союзе химиков (IUPAC) существует Комиссия по относительной распространенности изотопов и атомным весам (Commission on Isotopic Abundances and Atomic Weights или сокращенно – CIAAW), но не "Комиссия по относительным атомным массам". Однако все химики прекрасно понимают, что речь идет об одном и том же.
В российских учебниках и заданиях ЕГЭ пользуются термином относительная атомная масса, которую обозначают символом Ar. Здесь "r" – от английского "relative" – относительный. Например, Ar = 12,0000 – относительная атомная масса углерода 12 6C равна 12,0000. В современной научной литературе относительная атомная масса и атомный вес – синонимы.
** Из курса физики вы помните, что вес физического тела является переменной величиной. Например, на Земле и на Луне одно и то же физическое тело имеет разный вес, но масса тела – величина постоянная. Поэтому термин “ относительная атомная масса” считается более строгим. Для многих вычислений удобно массы протона и нейтрона в шкале а.е.м. считать округленно равными единице .
На рис. 2-5 показаны атомы двух разных видов. Может возникнуть вопрос: почему двух, а не трех видов – ведь на рисунке изображены три атома? Дело в том, что атомы (б) и (в) относятся к одному и тому же химическому элементу углероду, в то время как атом (а) – совсем другой элемент (водород). Что же такое химические элементы и чем они отличаются друг от друга?
Водород и углерод отличаются числом протонов в ядре и, следовательно, числом электронов в электронной оболочке. Число протонов в ядре атома называют зарядом ядра атома и обозначают буквой Z. Это очень важная величина. Когда мы перейдем к изучению Периодического закона, то увидим, что число протонов в ядре совпадает с порядковым номером атома в Периодической таблице Д.И.Менделеева.
Как мы уже говорили, заряд ядра (число протонов) совпадает с числом электронов в атоме. Когда атомы сближаются, то в первую очередь они взаимодействуют друг с другом не ядрами, а электронами. Число электронов определяет способность атома образовывать связи с другими атомами, то есть его химические свойства. Поэтому атомы с одинаковым зарядом ядра (и одинаковым числом электронов) ведут себя в химическом отношении практически одинаково и рассматриваются как атомы одного химического элемента .
ЭЛЕМЕНТОМ называется вещество, состоящее из атомов с одинаковым ЗАРЯДОМ ЯДРА.
На рис. 2-5 водород (один протон в ядре) и углерод (шесть протонов в ядре) – это разные химические элементы. А вот атомы (б) и (в), у которых по 6 протонов в ядре (хотя и разное количество нейтронов!), принадлежат одному и тому же химическому элементу (углероду).
** Слово "элемент" существовало в обиходе химиков задолго до того, как стало что-нибудь известно о строении атома. Средневековые алхимики и ученые-химики до начала XIХ века ничего не знали об атомном ядре и, тем более, о протонах и электронах. Но о существовании элементов естествоиспытатели догадывались давно и затратили немало сил для того, чтобы выяснить – что же считать элементом?
Очень хорошее (и вполне современное!) определение элемента дал еще древнегреческий философ Аристотель (384-322 до н.э.):
"Все окружающее представляет собой элементы либо состоит из элементов. Элемент представляет собой то, на что можно разложить другие тела, но не может быть разложено само ни на что более простое или отличное от самого себя".
Эта догадка опиралась на здравый смысл и у большинства химиков не вызывала сомнений, но при ответе на вопрос – что же считать элементом – возникало чисто практическое затруднение. Если какое-либо вещество не разлагается на более простые вещества, то не ясно – является ли оно элементом, или мы просто не умеем его разложить? В 1857 году немецкий химик Юстус Либих написал: "Элементы рассматриваются как простые вещества не потому, что мы знаем это, а лишь потому, что не знаем о них противоположного".
Например, долгое время воду считали элементом, и только в 1784 году англичанин Генри Кавендиш показал, что вода состоит из более простых веществ – водорода и кислорода. Водород, кстати, был открыт Г.Кавендишем, но вместо своего нынешнего названия имел гораздо более длинное: "воспламеняемый, горючий воздух из металлов" (дело в том, что водород получали, действуя кислотами на цинк, железо и некоторые другие металлы). Название ВОДО-РОД (то есть – рождающий воду) просто еще не могло существовать, поскольку никто не догадывался, что этот легкий газ и вода имеют друг к другу близкое отношение.
Однажды другой английский исследователь – Джозеф Пристли – в присутствии Кавендиша провел простой, хотя и небезопасный опыт – взорвал смесь водорода с кислородом. Пристли (он является первооткрывателем кислорода) впоследствии вспоминал об этом, как о "случайном эксперименте для развлечения нескольких философствующих друзей". Наблюдательный Кавендиш повторил этот опыт, но уже не взрывая, а сжигая водород в кислороде. Ему удалось довольно точно измерить объем взаимодействующих газов (объем водорода в этом опыте относился к объему кислорода как 2 : 1) и показать, что вода является продуктом реакции между этими двумя газами. Отсюда следовало, что вода – не элемент, а химическое соединение водорода и кислорода.
Более практическое определение элементу дал английский физик и химик Роберт Бойль:
Элемент – это вещество, которое при химическом превращении всегда увеличивает свой вес.
Например, при ржавлении куска железа его вес всегда увеличивается. Ржавление – это химическая реакция железа с водой и кислородом воздуха, поэтому в массу ржавого железа включается и масса прореагировавших с ним веществ. Химикам были известны и другие реакции, в которых железо увеличивало вес, но не существовало ни одной реакции, в которой железо разлагалось бы на более легкие продукты. Из этого заключалось, что железо, вероятно, является элементом.
| Образцы пяти химических элементов из книги П.Эткинса "Молекулы". Желтая глыба – сера (S). Правее – медь (Cu). Красная жидкость в колбе – бром (Br2). В часовых стеклах – элементы иод (фиолетовые кристаллы I2) и ртуть (жидкий металл Hg). |
Можно представить себе те трудности, с которыми сталкивались естествоиспытатели до появления теории строения атома. Тем не менее, еще до XIX века были правильно установлены многие элементы: углерод, сера, медь, золото, серебро, железо, свинец, олово, ртуть, цинк, мышьяк, сурьма, висмут, платина, фосфор, кобальт, никель, водород, кислород, азот, марганец.
Сумма тяжелых частиц (нейтронов и протонов) в ядре атома какого-либо элемента называется массовым числом и обозначается буквой А . Из названия этой величины видно, что она тесно связана с округленной до целого числа атомной массой элемента.
Здесь A – массовое число атома (сумма протонов и нейтронов), Z – заряд ядра (число протонов в ядре), N – число нейтронов в ядре.
Природа устроена так, что один и тот же элемент может существовать в виде двух или нескольких изотопов . Изотопы отличаются друг от друга только числом нейтронов в ядре (числом N). Поскольку нейтроны практически не влияют на химические свойства элементов, все изотопы одного и того же элемента химически неотличимы. На рис. 2-5б показан изотоп углерода с массовым числом 12 (6 протонов + 6 нейтронов = 12), а на рис. 2-5в – изотоп углерода с массовым числом 13 (6 протонов + 7 нейтронов = 13).
Изотопами называются вещества, состоящие из атомов с одинаковым зарядом ядра (то есть с одинаковым числом протонов), но с разным числом нейтронов в ядре. Изотопы отличаются друг от друга только массовым числом. Все элементы состоят из одного или нескольких изотопов.
Например, алмаз состоит из элемента углерода. Если бы удалось изготовить два совершенно одинаковых брильянта из углерода с массовым числом 12 и углерода с массовым числом 13, то оба кристалла в химическом отношении были бы одним и тем же элементом углеродом (заряд ядра + 6), но их масса была бы немного разной. Правда, стоимость брильянтов из чистого углерода-12 и чистого углерода-13 была бы во много раз выше, чем у обычных. Дело в том, что разделять изотопы чрезвычайно трудно из-за того, что их химические и физические свойства очень близки.
** Лишь немногие изотопы в природе неустойчивы и поэтому постепенно распадаются с излучением субатомных частиц и электромагнитных волн. Это явление называется радиоактивностью, о которой мы уже упоминали в этой главе. Вопреки распространенному мнению термин изотоп совсем не обязательно связан с радиоактивностью – большинство природных (но не искусственных!) изотопов устойчиво и мы просто не замечаем их присутствие в том или ином элементе, поскольку не различаем их химические и физические свойства. Таковы изотопы железа, меди, хлора, кальция и многих других элементов, с которыми мы познакомимся немного позже.

Согласно современным представлениям, атом состоит из ядра и расположенных вокруг него электронов. Ядро атома, в свою очередь, состоит из более малых элементарных частиц ‒ из определенного количества протонов и нейтронов (общепринятое название для которых – нуклоны), связанных между собой ядерными силами.
Количество протонов в ядре определяет строение электронной оболочки атома. А электронная оболочка определяет физико-химические свойства вещества. Число протонов соответствует порядковому номеру атома в периодической системе химических элементов Менделеева, именуется также зарядовое число, атомный номер, атомное число. Например, число протонов у атома Гелия – 2. В периодической таблице он стоит под номером 2 и обозначается как He2 Символом для обозначения количества протонов служит латинская буква Z. При записи формул зачастую цифра, указывающая на количество протонов, располагается снизу от символа элемента либо справа, либо слева: He2 / 2He.
Количество нейтронов соответствует определённому изотопу того или иного элемента. Изотопы – это элементы с одинаковым атомным номером (одинаковым количеством протонов и электронов), но с разным массовым числом. Массовое число – общее количество нейтронов и протонов в ядре атома (обозначается латинской буквой А). При записи формул массовое число указывается вверху символа элемента с одной из сторон: He 4 2/ 4 2He (Изотоп Гелия – Гелий — 4)
Таким образом, чтобы узнать число нейтронов в том или ином изотопе, следует от общего массового числа отнять число протонов. Например, нам известно, что в атоме Гелия-4 He 4 2 cодержится 4 элементарные частицы, так как массовое число изотопа – 4 . При этом нам известно, что He 4 2 меет 2 протона. Отняв от 4 (общее массовое число) 2 (кол-во протонов) получаем 2 – количество нейтронов в ядре Гелия-4.
ПРОЦЕСС РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРЕ АТОМА. В качестве примера мы не случайно рассмотрели Гелий-4 (He 4 2), ядро которого состоит из двух протонов и двух нейтронов. Поскольку ядро Гелия-4, именуемое альфа-частицей (α-частица) обладает наибольшей эффективностью в ядерных реакциях, его часто используют для экспериментов в этом направлении. Стоит отметить, что в формулах ядерных реакций зачастую вместо He 4 2 используется символ α.
Именно с участием альфа-частиц была проведена Э. Резерфордом первая в официальной истории физики реакция ядерного превращения. В ходе реакции α-частицами (He 4 2) «бомбардировались» ядра изотопа азота (N 14 7), вследствие чего образовался изотоп оксигена (O 17 8) и один протон (p 1 1)
Данная ядерная реакция выглядит следующим образом:

Осуществим расчёт количества фантомных частичек По до и после данного преобразования.
ДЛЯ РАСЧЁТА КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО НЕОБХОДИМО:
Шаг 1. Посчитать количество нейтронов и протонов в каждом ядре:
— количество протонов указано в нижнем показателе;
— количество нейтронов узнаем, отняв от общего массового числа (верхний показатель) количество протонов (нижний показатель).
Шаг 2. Посчитать количество фантомных частичек По в атомном ядре:
— умножить количество протонов на количество фантомных частичек По, содержащихся в 1 протоне;
— умножить количество нейтронов на количество фантомных частичек По, содержащихся в 1 нейтроне;
Шаг 3. Сложить количество фантомных частичек По:
— сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах до реакции;
— сложить полученное количество фантомных частичек По в протонах с полученным количеством в нейтронах в ядрах после реакции;
— сравнить количество фантомных частичек По до реакции с количеством фантомных частичек По после реакции.
ПРИМЕР РАЗВЁРНУТОГО ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДРАХ АТОМОВ.
(Ядерная реакция с участием α-частицы (He 4 2), провёденная Э. Резерфордом в 1919 году)

ДО РЕАКЦИИ (N 14 7 + He 4 2)
N 14 7
Количество протонов: 7
Количество нейтронов: 14-7 = 7
Количество фантомных частичек По:
в 1 протоне – 12 По, значит в 7 протонах: (12 х 7) = 84;
в 1 нейтроне – 33 По, значит в 7 нейтронах: (33 х 7) = 231;
Общее количество фантомных частичек По в ядре: 84+231 = 315
He 4 2
Количество протонов – 2
Количество нейтронов 4-2 = 2
Количество фантомных частичек По:
в 1 протоне – 12 По, значит в 2 протонах: (12 х 2) = 24
в 1 нейтроне – 33 По, значит в 2 нейтронах: (33 х 2) = 66
Общее количество фантомных частичек По в ядре: 24+66 = 90
Итого, количество фантомных частичек По до реакции
N 14 7 + He 4 2
315 + 90 = 405
ПОСЛЕ РЕАКЦИИ (O 17 8) и один протон (p 1 1):
O 17 8
Количество протонов: 8
Количество нейтронов: 17-8 = 9
Количество фантомных частичек По:
в 1 протоне – 12 По, значит в 8 протонах: (12 х 8) = 96
в 1 нейтроне – 33 По, значит в 9 нейтронах: (9 х 33) = 297
Общее количество фантомных частичек По в ядре: 96+297 = 393
p 1 1
Количество протонов: 1
Количество нейтронов: 1-1=0
Количество фантомных частичек По:
В 1 протоне – 12 По
Нейтроны отсутствуют.
Общее количество фантомных частичек По в ядре: 12
Итого, количество фантомных частичек По после реакции
(O 17 8 + p 1 1):
393 + 12 = 405
Сравним количество фантомных частичек По до и после реакции:
| До реакции | После реакции |
| 405 | 405 |
Количества фантомных частичек По до и после реакции равны.
ПРИМЕР СОКРАЩЁННОЙ ФОРМЫ ВЫЧИСЛЕНИЯ КОЛИЧЕСТВА ФАНТОМНЫХ ЧАСТИЧЕК ПО В ЯДЕРНОЙ РЕАКЦИИ.
Здесь и далее расчёты количества фантомных частичек По приведены в сокращённой форме, в которой отображено общее количество фантомных частичек По в каждом ядре, а также их сумма до и после реакции.
Известной ядерной реакцией является реакция взаимодействия α-частиц с изотопом бериллия, прикоторой впервые был обнаружен нейтрон, проявивший себя как самостоятельная частица в результате ядерного преобразования. Данная реакция была осуществлена в 1932 году английским физиком Джеймсом Чедвиком. Формула реакции:

213 + 90 → 270 + 33 — количество фантомных частичек По в каждом из ядер
303 = 303 — общая сумма фантомных частичек По до и после реакции
Количества фантомных частичек По до и после реакции равны.
Что ты хочешь узнать?
Ответ
Посмотри на порядковый номер элемента в переодической таблице, это количество протонов, например у атома Бора это 5. Посмотри на атамную массу и округлить до ближайшего целого числа. То есть если атомная масса 10. 811 как у Бора то атомная масса будет равна примерно 11. Теперь от атомной массы отними количество протонов. От 11 отнимем 5 получим 6, то есть шесть нейтронов. В атоме положительный заряд несут протоны, а отрицательный электроны и в нормальных атомах на каждый положительный заряд приходится отрицательный, то есть на каждый протон по электрону.
Кол- во протонов = порядковый номер элемента в переодической таблице
Кол- во Нейтронов = округленная до целого атомная масса минус кол-во протонов
Кол-во электронов = Кол-во протонов