Магнитное поле проводника с переменным током

Магнитное поле проводника с переменным током

Содержание

Если магнитное поле симметрично, то вычисление напряженности поля, а значит, и индукции не представляет большого труда. Например, напряженность поля в точке а на расстоянии r от оси прямолинейного проводника с током
(рис. 1) в соответствии с законом полного тока в простейшей форме (1) выражается, как

Рис. 1 Напряженность магнитного поля проводника с током. Формула (2)

так как полный ток равен току в проводе I , а контур совпадает с магнитной линией, которая проходит через точку
а (рис. 1 ), и .

Магнитная индукция

где B — магнитная индукция, Тл; I — ток, А; r — расстояние, м.

Если проводник находится в неферромагнитной среде, то, полагая μ=1 , получаем

Приведенная формула правильна при любом значении r, большем радиуса проводника и бесконечно большой длине проводника; однако она применима и при конечной длине проводника, если расстояние r значительно меньше длины проводника и точка, в которой определяется индукция, не находится вблизи конца проводника.

По закону полного тока нетрудно найти напряженность поля и внутри длинного цилиндрического провода радиуса a (рис. 2, а). Во всех точках поперечного сечения провода плотность тока

Из условий симметрии следует, что внутри провода, как и вне провода, все магнитные линии — это концентрические окружности с центром на оси провода.

Рис.2 Напряженность поля внутри провода с током (а) и распределение напряженности поля (б)

Окружность радиуса r совпадающий с магнитной линией. Обозначив площадь сечения, ограниченного замкнутым контуром, , а ток, пронизывающий это сечение, по закону полного тока (1) можем написать выражение напряженности магнитного поля

которая одинакова во всех точках контура и направлена по касательной к окружности (рис. 2,а), т. е. H=HL.
Подставив в последнюю формулу выражения плотности тока и площади замкнутого контура, получим

Таким образом, напряженность поля в произвольной точке внутри провода пропорциональна расстоянию r этой точки от оси провода. На оси провода H=0, так как r=0. На поверхности провода (r=а) напряженность поля имеет наибольшее значение:

и далее при r>а уменьшается согласно (2).
График распределения напряженности магнитного поля внутри и вне проводника дан на рис. 2, б.
Магнитная индукция внутри проводника равна произведению напряженности магнитного поля и абсолютной магнитной проницаемости материала провода, т. е.


где В — магнитная индукция, Тл; I — ток, А; расстояние r и а — м.

Пример

Найти распределение напряженности поля трубчатого провода (рис 6.19) с внутренним радиусом г2 и внешним r3, если по проводу проходит ток I.

Рис. 5.1 Трубчатый провод
Решение. Площадь поперечного сечения трубчатого провода

и плотность тока в проводе

Проведем окружность радиусом г r3. т. е. за пределами провода,
нейдем, что

Электромагнитное поле (ЭМП), представляющее собой совокупность переменных электрического и магнитного полей, вызывает появление в находящихся в нем проводниках переменных токов, а в диэлектриках приводит к поворотам дипольных молекул, т. е. к поляризации, происходящей с частотой, определяемой частотой ЭМП. На приведение в движение электронов, ионов и дипольных молекул поле затрачивает энергию и в. зависимости от того, какой механизм взаимодействия поля с веществом имеет место, принято говорить об энергетических потерях проводимости или о диэлектрических энергетических потерях электромагнитного поля. Вызванное полем движение заряженных частиц повышает внутреннюю энергию вещества, т. е. приводит к его нагреванию, которое происходит тем более интенсивно, чем больше скорость колебательного движения частиц, т. е. чем больше частота электромагнитного поля.

Для создания высокочастотного электромагнитного поля служат специальные генераторы, основной частью которых является колебательный контур, состоящий из конденсатора и катушки индуктивности. Высокочастотный нагрев вещества осуществляют различными способами, в зависимости от расположения его относительно элементов колебательного контура (рис.). Рассмотрим каждый из этих способов.

Нагревание проводников высокочастотным током. Пусть к торцевым поверхностям проводящего цилиндра с удельным сопротивлением р, длиной / и площадью поперечного сечения S приложены электроды, соединенные с генератором переменного напряжения (рис. а). В соответствии с законом Джоуля – Ленца количество теплоты Q, выделяемой при прохождении по проводнику с сопротивлением R силы тока I за время t будет

где I – плотность тока; V – объем проводника.

Назовем интенсивностью нагрева величину, численно равную количеству теплоты, выделяемой в единицу времени в единице объема вещества, т. е. q = Q/Vt. Тогда интенсивность нагрева проводника qпр = j 2 r (4.29).

Таким образом, интенсивность нагрева проводника электрическим током пропорциональна его удельному сопротивлению и квадрату плотности тока. Следует иметь в виду, что для синусоидального переменного тока величина j представляет собой эффективное значение плотности тока, т. е. j = jм/Ö2, где jм– амплитудное значение плотности тока.

Нагревание проводника в переменном электрическом поле. Пусть теперь проводящий цилиндр находится в колебательном контуре между пластинами конденсатора, в котором существует переменное электрическое поле, приводящее в движение электроны проводника (рис. в). Согласно закону Ома, плотность тока связана с напряженностью электрического поля в. проводнике соотношением j = E/r. Поэтому выражение можно переписать, заменив qnpна qE, т.е. на интенсивность нагрева в электрическом поле:

Здесь под Е также понимается эффективное значение напряженности поля.

Таким образом, интенсивность нагрева в электрическом поле пропорциональна квадрату напряженности поля и обратно пропорциональна удельному сопротивлению проводника.

Нагревание проводника в переменном магнитном поле. Поместим теперь проводящий цилиндр в катушку колебательного контура (рис. 6). Переменное магнитное поле создает в проводнике вихревой индукционный ток, который и нагревает проводник. Проводя соответствующие расчеты, можно показать, что интенсивность нагрева qB в переменном магнитном поле с индукцией В пропорциональна квадрату величины магнитной индукции, квадрату частоты магнитного поля и обратно пропорциональна удельному сопротивлению проводника

)

где В– эффективное значение индукции магнитного поля и К – коэффициент пропорциональности.

Как видно, интенсивность нагрева в переменных электрическом и магнитном полях обратно пропорциональна удельному сопротивлению вещества. На этом основаны применяемые в терапии и в сельском хозяйстве методы борьбы с грибковыми заболеваниями и дезинфекции зерна. При облучении высокочастотным ЭМП зерна, в котором находятся жучки-вредители, в теле жучков, обладающих меньшим удельным сопротивлением, чем зерно, выделяется больше тепла. Жучки нагреваются и погибают, а зерно всхожести не теряет.

Нагревание диэлектриков в высокочастотном электрическом поле. В диэлектриках переменное электрическое поле вызывает электронную и дипольную поляризации. Время релаксации электронной поляризации

10 –15 с. Поэтому при частотах ЭМП, создаваемых радиотехническими устройствами и применяемых в биологических исследованиях и физиотерапии (до 10 10 Гц), электроны успевают следовать за изменениями напряженности ЭМП, и электронная поляризация происходит так же, как и при постоянном поле, с той лишь разницей, что знаки электрических зарядов на противоположных поверхностях диэлектрика изменяются с частотой ЭМП. Поэтому диэлектрическая проницаемость веществ с электронной поляризацией не зависит от частоты ЭМП (рис. а). Поскольку ориентационная поляризация обусловлена поворотом тяжелых дипольных молекул, то при больших частотах инерция их приводит к тому, что они не успевают следовать за изменениями вектора напряженности электрического поля, а при очень больших частотах они практически остаются на месте. На рис. б показана зависимость относительной диэлектрической проницаемости от частоты для полярной диэлектрической жидкости. Пока частота МП мала, диполи успевают следовать за изменениями поля, значение е велико и близко к значению при постоянном поле. При больших частотах диэлектрическая проницаемость резко уменьшается и ее значение приближается к величине, соответствующей электронной поляризации.

Рассмотрим, какова интенсивность нагрева диэлектрика в переменном электрическом поле (рис.в). Если поляризация диэлектрика между пластинами конденсатора носит электронный характер, то перезарядка конденсатора происходит без потерь энергии. Такие участки цепи переменного тока, в которых не происходит выделения энергии, носят название реактивных.

В реальном диэлектрике, в котором существует, хотя бы и малый, ток проводимости и поляризация обусловлена поворотом дипольных молекул, как уже говорилось, протекает ток Iпр = Iпр + Iор + Iэ — Ток Iэ, обусловленный электронной поляризацией, чисто реактивный. Ток проводимости Iпр, обусловленный движением имеющихся в диэлектрике свободных ионов или электронов,– ток активный, т. е. такой, при прохождении которого выделяется джоулево тепло. Активный ток не отстает по фазе от напряжения и на векторной диаграмме направлен в ту же сторону, что и вектор напряжения. Что касается тока Iор, то он частично активный и частично реактивный. Сам по себе поворот диполей, если бы он происходил в вакууме, не требовал бы затраты энергии. Однако сопротивление среды приводит к нагреву диэлектрика. Поэтому на векторной диаграмме должны быть отложены и активная составляющая Iа,ор, и реактивная Iр,ор ориентационного тока (рис. ). В результате векторного сложения получается вектор общего тока, который сдвинут по отношению к вектору реактивного тока на угол d, называемый углом диэлектрических потерь. Как видно из рис. б,

Тангенс угла диэлектрических потерь характеризует долю энергии ЭМП, расходуемой в диэлектрике на его нагревание. Если d = 0, то ток реактивный и потери энергии отсутствуют. Если d = p/2, то реактивной составляющей нет и вся энергия расходуется на нагревание тела. Можно показать, что интенсивность нагрева диэлектрика qд = E 2 w 2 ee0tgd, где под Е, как и в предыдущих формулах, надо понимать эффективное значение напряженности переменного электрического поля.

Таким образом, tgd определяет долю энергии электромагнитного поля, теряемой им на нагревание диэлектрика. Для современных электроизоляционных материалов величина tgd находится в пределах от 0,0001 до 0,05. Чем меньше тангенс угла потерь, тем лучше диэлектрические свойства материала, так как в нем меньше потери энергии, вызывающие нагрев диэлектрика и приводящие к его разрушению. Тангенс угла потерь зависит от частоты ЭМП (рис.). С увеличением частоты потери энергии возрастают в результате того, что диполи вынуждены чаще переориентироваться в электрическом поле, на что будет затрачиваться все большая энергия. Но так происходит только до определенной частоты. При очень больших частотах диполи не успевают следовать за изменением переменного поля, и потери энергии уменьшаются. В диэлектриках с чисто электронной поляризацией (чистые неполярные жидкости, фторопласт, полистирол) диэлектрические потери очень малы (tgd »10 –5 – 10 –4 ) и не зависят от частоты вплоть до 1 ГГц.

Значение tgd можно выразить через параметры диэлектрика

Таким образом,

Среду считают проводящей, если потери проводимости в ней значительно больше диэлектрических потерь, т.е. если tgd >> l, полупроводящей, если tgd » l, и диэлектрической при tgd

Не нашли то, что искали? Воспользуйтесь поиском:

Дата публикации: 09 августа 2013 .
Категория: Электротехника.

Если к прямолинейному проводнику с электрическим током поднести магнитную стрелку, то она будет стремиться стать перпендикулярно плоскости, проходящей через ось проводника и центр вращения стрелки. Это указывает на то, что на стрелку действуют особые силы, которые называются магнитными силами. Кроме действия на магнитную стрелку, магнитное поле оказывает влияние на движущиеся заряженные частицы и на проводники с током, находящиеся в магнитном поле. В проводниках, движущихся в магнитном поле, или в неподвижных проводниках, находящихся в переменном магнитном поле, возникает индуктивная электродвижущая сила (э. д. с.).

Магнитное поле

В соответствии с вышесказанным мы можем дать следующее определение магнитного поля.

Магнитным полем называется одна из двух сторон электромагнитного поля, возбуждаемая электрическими зарядами движущихся частиц и изменением электрического поля и характеризующаяся силовым воздействием на движущиеся зараженные частицы, а стало быть, и на электрические токи.

Рисунок 1. Магнитное поле вокруг проводника с током
Рисунок 2. Направление магнитных индукционных линий

Если продеть через картон толстый проводник и пропустить по нему электрический ток, то стальные опилки, насыпанные на картон, расположатся вокруг проводника по концентрическим окружностям, представляющим собой в данном случае так называемые магнитные индукционные линии (рисунок 1). Мы можем передвигать картон вверх или вниз по проводнику, но расположение стальных опилок не изменится. Следовательно, магнитное поле возникает вокруг проводника по всей его длине.

Если на картон поставить маленькие магнитные стрелки, то, меняя направление тока в проводнике, можно увидеть, что магнитные стрелки будут поворачиваться (рисунок 2). Это показывает, что направление магнитных индукционных линий меняется с изменением направления тока в проводнике.

Магнитные индукционные линии вокруг проводника с током обладают следующими свойствами: 1) магнитные индукционные линии прямолинейного проводника имеют форму концентрических окружностей; 2) чем ближе к проводнику, тем гуще располагаются магнитные индукционные линии; 3) магнитная индукция (интенсивность поля) зависит от величины тока в проводнике; 4) направление магнитных индукционных линий зависит от направления тока в проводнике.

Чтобы показать направление тока в проводнике, изображенном в разрезе, принято условное обозначение, которым мы в дальнейшем будем пользоваться. Если мысленно поместить в проводнике стрелку по направлению тока (рисунок 3), то в проводнике, ток в котором направлен от нас, увидим хвост оперения стрелы (крестик); если же ток направлен к нам, увидим острие стрелы (точку).

Рисунок 3. Условное обозначение направления тока в проводниках

Правило буравчика

Правило буравчика позволяет определить направление магнитных индукционных линий вокруг проводника с током. Если буравчик (штопор) с правой резьбой будет двигаться поступательно по направлению тока, то направление вращения ручки будет совпадать с направлением магнитных индукционных линий вокруг проводника (рисунок 4).

Магнитная стрелка, внесенная в магнитное поле проводника с током, располагается вдоль магнитных индукционных линий. Поэтому для определения ее расположения можно также воспользоваться "правилом буравчика" (рисунок 5). Магнитное поле есть одно из важнейших проявлений электрического тока и не может быть получено независимо и отдельно от тока.

Рисунок 4. Определение направления магнитных индукционных линий вокруг проводника с током по "правилу буравчика" Рисунок 5. Определение направления отклонений магнитной стрелки, поднесенной к проводнику с током, по "правилу буравчика"

Магнитная индукция

Магнитное поле характеризуется вектором магнитной индукции, который имеет, следовательно, определенную величину и определенное направление в пространстве.

Рисунок 6. К закону Био и Савара

Количественное выражение для магнитной индукции в результате обобщения опытных данных установлено Био и Саваром (рисунок 6). Измеряя по отклонению магнитной стрелки магнитные поля электрических токов различной величины и формы, оба ученых пришли к выводу, что всякий элемент тока создает на некотором расстоянии от себя магнитное поле, магнитная индукция которого ΔB прямо пропорциональна длине Δl этого элемента, величине протекающего тока I, синусу угла α между направлением тока и радиусом-вектором, соединяющим интересующую нас точку поля с данным элементом тока, и обратно пропорциональна квадрату длины этого радиус-вектора r:

где K – коэффициент, зависящий от магнитных свойств среды и от выбранной системы единиц.

В абсолютной практической рационализованной системе единиц МКСА

где µ0магнитная проницаемость вакуума или магнитная постоянная в системе МКСА:

µ0 = 4 × π × 10 -7 (генри/метр);

генри (гн) – единица индуктивности; 1 гн = 1 ом × сек.

µ – относительная магнитная проницаемость – безразмерный коэффициент, показывающий, во сколько раз магнитная проницаемость данного материала больше магнитной проницаемости вакуума.

Размерность магнитной индукции можно найти по формуле

Вольт-секунда иначе называется вебером (вб):

На практике встречается более мелкая единица магнитной индукции – гаусс (гс):

Закон Био Савара позволяет вычислить магнитную индукцию бесконечно длинного прямолинейного проводника:

где а – расстояние от проводника до точки, где определяется магнитная индукция.

Напряженность магнитного поля

Отношение магнитной индукции к произведению магнитных проницаемостей µ × µ0 называется напряженностью магнитного поля и обозначается буквой H:

Последнее уравнение связывает две магнитные величины: индукцию и напряженность магнитного поля.

Найдем размерность H:

Иногда пользуются другой единицей измерения напряженности магнитного поля – эрстедом (эр):

Напряженность магнитного поля H, как и магнитная индукция B, является векторной величиной.

Линия, касательная к каждой точке которой совпадает с направлением вектора магнитной индукции, называется линией магнитной индукции или магнитной индукционной линией.

Магнитный поток

Произведение магнитной индукции на величину площадки, перпендикулярной направлению поля (вектору магнитной индукции), называется потоком вектора магнитной индукции или просто магнитным потоком и обозначается буквой Ф:

Размерность магнитного потока:

то есть магнитный поток измеряется в вольт-секундах или веберах.

Более мелкой единицей магнитного потока является максвелл (мкс):

Видео 1. Гипотеза Ампера

Видео 2. Магнетизм и электромагнетизм

Источник: Кузнецов М. И., "Основы электротехники" – 9-е издание, исправленное – Москва: Высшая школа, 1964 – 560с.

Читайте также:  Не работает вакуум на трамблере
Оценить статью
Добавить комментарий